Kaan Kumas, Azmi Al-Jubury, Per W. Kania, Taghrid Abusharkh, Kurt Buchmann
{"title":"大西洋鲱鱼(Clupea harengus L)中单纯疟原虫第三期幼虫的位置和消灭情况","authors":"Kaan Kumas, Azmi Al-Jubury, Per W. Kania, Taghrid Abusharkh, Kurt Buchmann","doi":"10.1016/j.ijppaw.2024.100937","DOIUrl":null,"url":null,"abstract":"<div><p>We here describe the location of anisakid third stage larvae in Atlantic herring <em>Clupea harengus</em> L. caught in the North Sea in August 2023. We further demonstrate how industrial processing (mechanical gutting, removal of entrails, head, tail, hypaxial anterior musculature and vertebral column) reduces the overall infection and worm load in the musculature. The isolated anisakid larvae were identified as <em>Anisakis simplex</em> sensu stricto by a combination of morphometrics and molecular methods (PCR of rDNA and mtDNA, sequencing, BLAST analysis). As a baseline we examined a total of 75 specimens of freshly caught and ungutted herring and showed a positive correlation between host size (fish length and weight) and infection level. The overall prevalence of infection was 84 %, the mean intensity 11.3 (range 1–38 parasites per fish) and the abundance 9.52. The main part of the overall worm population was associated with stomach and pyloric caeca in the body cavity (77 %) and only 5 % was found in the musculature. Larvae occurred in the hypaxial part of the musculature (21), the epaxial part (7 worms) and the caudal part (5 worms). The prevalence of muscle infection was 28 % and the mean intensity 1.6 (range 1–5) parasites per fish and abundance 0.44 parasites per fish. In order to assess the effect of industrial processing on worm occurrence in the fish we examined a total of 67 specimens of herring, from exactly the same batch, but following processing. This included removal of organs in the body cavity, cutting the lower part of the hypaxial segment but leaving the right and left musculature connected by dorsal connective tissue. Five out of these fish carried one larva (prevalence 7.5%, mean intensity 1, abundance 0.07 larvae per fish), and these worms were located in the ventral part of the anterior musculature (2), in the central part of the anterior musculature (2) and one larva in the central part of the caudal musculature. The industrial processing reduced the overall occurrence (abundance) of worms in the fish from 9.52 to 0.07 (136 times reduction) and the occurrence in the musculature from 0.44 to 0.07 (6.28 times reduction). The overall prevalence was reduced from 84 % to 7.5 % (11.2 times reduction). Muscle infection prevalence fell from 28 % to 7.5 % (3.7 times reduction). We then followed another batch of herring following a marinating process (11% NaCl for 24 h and subsequent incubation in acetic acid and vinegar) by artificially digesting the flaps during week 1–8. Although a total of 31 larvae were recovered from 144 fish examined no live nematode larvae were isolated. The importance of fish handling, processing and marination for consumer safety is discussed.</p></div>","PeriodicalId":54278,"journal":{"name":"International Journal for Parasitology-Parasites and Wildlife","volume":"24 ","pages":"Article 100937"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213224424000336/pdfft?md5=26fcb463f44fa8886a158b8169ad386e&pid=1-s2.0-S2213224424000336-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Location and elimination of Anisakis simplex third stage larvae in Atlantic herring Clupea harengus L\",\"authors\":\"Kaan Kumas, Azmi Al-Jubury, Per W. Kania, Taghrid Abusharkh, Kurt Buchmann\",\"doi\":\"10.1016/j.ijppaw.2024.100937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We here describe the location of anisakid third stage larvae in Atlantic herring <em>Clupea harengus</em> L. caught in the North Sea in August 2023. We further demonstrate how industrial processing (mechanical gutting, removal of entrails, head, tail, hypaxial anterior musculature and vertebral column) reduces the overall infection and worm load in the musculature. The isolated anisakid larvae were identified as <em>Anisakis simplex</em> sensu stricto by a combination of morphometrics and molecular methods (PCR of rDNA and mtDNA, sequencing, BLAST analysis). As a baseline we examined a total of 75 specimens of freshly caught and ungutted herring and showed a positive correlation between host size (fish length and weight) and infection level. The overall prevalence of infection was 84 %, the mean intensity 11.3 (range 1–38 parasites per fish) and the abundance 9.52. The main part of the overall worm population was associated with stomach and pyloric caeca in the body cavity (77 %) and only 5 % was found in the musculature. Larvae occurred in the hypaxial part of the musculature (21), the epaxial part (7 worms) and the caudal part (5 worms). The prevalence of muscle infection was 28 % and the mean intensity 1.6 (range 1–5) parasites per fish and abundance 0.44 parasites per fish. In order to assess the effect of industrial processing on worm occurrence in the fish we examined a total of 67 specimens of herring, from exactly the same batch, but following processing. This included removal of organs in the body cavity, cutting the lower part of the hypaxial segment but leaving the right and left musculature connected by dorsal connective tissue. Five out of these fish carried one larva (prevalence 7.5%, mean intensity 1, abundance 0.07 larvae per fish), and these worms were located in the ventral part of the anterior musculature (2), in the central part of the anterior musculature (2) and one larva in the central part of the caudal musculature. The industrial processing reduced the overall occurrence (abundance) of worms in the fish from 9.52 to 0.07 (136 times reduction) and the occurrence in the musculature from 0.44 to 0.07 (6.28 times reduction). The overall prevalence was reduced from 84 % to 7.5 % (11.2 times reduction). Muscle infection prevalence fell from 28 % to 7.5 % (3.7 times reduction). We then followed another batch of herring following a marinating process (11% NaCl for 24 h and subsequent incubation in acetic acid and vinegar) by artificially digesting the flaps during week 1–8. Although a total of 31 larvae were recovered from 144 fish examined no live nematode larvae were isolated. The importance of fish handling, processing and marination for consumer safety is discussed.</p></div>\",\"PeriodicalId\":54278,\"journal\":{\"name\":\"International Journal for Parasitology-Parasites and Wildlife\",\"volume\":\"24 \",\"pages\":\"Article 100937\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213224424000336/pdfft?md5=26fcb463f44fa8886a158b8169ad386e&pid=1-s2.0-S2213224424000336-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Parasitology-Parasites and Wildlife\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213224424000336\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology-Parasites and Wildlife","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213224424000336","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Location and elimination of Anisakis simplex third stage larvae in Atlantic herring Clupea harengus L
We here describe the location of anisakid third stage larvae in Atlantic herring Clupea harengus L. caught in the North Sea in August 2023. We further demonstrate how industrial processing (mechanical gutting, removal of entrails, head, tail, hypaxial anterior musculature and vertebral column) reduces the overall infection and worm load in the musculature. The isolated anisakid larvae were identified as Anisakis simplex sensu stricto by a combination of morphometrics and molecular methods (PCR of rDNA and mtDNA, sequencing, BLAST analysis). As a baseline we examined a total of 75 specimens of freshly caught and ungutted herring and showed a positive correlation between host size (fish length and weight) and infection level. The overall prevalence of infection was 84 %, the mean intensity 11.3 (range 1–38 parasites per fish) and the abundance 9.52. The main part of the overall worm population was associated with stomach and pyloric caeca in the body cavity (77 %) and only 5 % was found in the musculature. Larvae occurred in the hypaxial part of the musculature (21), the epaxial part (7 worms) and the caudal part (5 worms). The prevalence of muscle infection was 28 % and the mean intensity 1.6 (range 1–5) parasites per fish and abundance 0.44 parasites per fish. In order to assess the effect of industrial processing on worm occurrence in the fish we examined a total of 67 specimens of herring, from exactly the same batch, but following processing. This included removal of organs in the body cavity, cutting the lower part of the hypaxial segment but leaving the right and left musculature connected by dorsal connective tissue. Five out of these fish carried one larva (prevalence 7.5%, mean intensity 1, abundance 0.07 larvae per fish), and these worms were located in the ventral part of the anterior musculature (2), in the central part of the anterior musculature (2) and one larva in the central part of the caudal musculature. The industrial processing reduced the overall occurrence (abundance) of worms in the fish from 9.52 to 0.07 (136 times reduction) and the occurrence in the musculature from 0.44 to 0.07 (6.28 times reduction). The overall prevalence was reduced from 84 % to 7.5 % (11.2 times reduction). Muscle infection prevalence fell from 28 % to 7.5 % (3.7 times reduction). We then followed another batch of herring following a marinating process (11% NaCl for 24 h and subsequent incubation in acetic acid and vinegar) by artificially digesting the flaps during week 1–8. Although a total of 31 larvae were recovered from 144 fish examined no live nematode larvae were isolated. The importance of fish handling, processing and marination for consumer safety is discussed.
期刊介绍:
The International Journal for Parasitology: Parasites and Wildlife (IJP-PAW) publishes the results of original research on parasites of all wildlife, invertebrate and vertebrate. This includes free-ranging, wild populations, as well as captive wildlife, semi-domesticated species (e.g. reindeer) and farmed populations of recently domesticated or wild-captured species (e.g. cultured fishes). Articles on all aspects of wildlife parasitology are welcomed including taxonomy, biodiversity and distribution, ecology and epidemiology, population biology and host-parasite relationships. The impact of parasites on the health and conservation of wildlife is seen as an important area covered by the journal especially the potential role of environmental factors, for example climate. Also important to the journal is ''one health'' and the nature of interactions between wildlife, people and domestic animals, including disease emergence and zoonoses.