{"title":"脱氢表雄酮(DHEA)与γ-氨基丁酸(GABA-A)受体δ亚基基因表达的正相关性","authors":"Ajna Hamidovic , Soojeong Cho , John Davis","doi":"10.1016/j.jsbmb.2024.106525","DOIUrl":null,"url":null,"abstract":"<div><p>Gamma-aminobutyric acid A (GABA-A) receptors in the cells of the immune system enhance anti-inflammatory responses by regulating cytokine secretion, cytotoxic responses, and cell activation. In the CNS, the formation of GABA-A subunits into a pentameric structure has been extensively studied; however, no such study has been conducted in the immune system. The objective of the present study was to examine associations between the levels of steroid hormones and GABA-A receptor δ subunit expression in the immune system. We focused on this subunit because GABA-A receptors that contain it become significantly more sensitive to steroid hormones. We collected 80 blood samples from reproductive age women for the purpose of analyzing dehydroepiandrosterone (DHEA), 17β-estradiol, progesterone, and allopregnanolone using liquid chromatography<em>-</em>mass spectrometry <em>(</em>LC<em>-</em>MS). Furthermore, we extracted peripheral blood mononuclear cells (PBMCs) for determining mRNA expression levels of GABA-A receptor genes encoding the δ and ε subunits. We constructed linear mixed effect models for each GABA-A receptor subunit with all 4 steroid hormones, age, and age of menarche as predictors. Whereas DHEA was significantly associated with δ subunit expression (t-value = 2.981; p = 0.003), in line with our hypothesis, none of the steroid hormones were significantly associated with the expression of the ε subunit. Results of this study indicate that significant interactions between hormones from the steroid hormone biosynthesis pathway and GABAergic machinery from the immune cells may be utilized to expand models examining the molecular basis of inflammatory conditions.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960076024000736/pdfft?md5=38848b83ff9234606c072c0fe0b1d22e&pid=1-s2.0-S0960076024000736-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Positive association between dehydroepiandrosterone (DHEA) and gene expression of the gamma-aminobutyric acid (GABA-A) receptor δ subunit\",\"authors\":\"Ajna Hamidovic , Soojeong Cho , John Davis\",\"doi\":\"10.1016/j.jsbmb.2024.106525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gamma-aminobutyric acid A (GABA-A) receptors in the cells of the immune system enhance anti-inflammatory responses by regulating cytokine secretion, cytotoxic responses, and cell activation. In the CNS, the formation of GABA-A subunits into a pentameric structure has been extensively studied; however, no such study has been conducted in the immune system. The objective of the present study was to examine associations between the levels of steroid hormones and GABA-A receptor δ subunit expression in the immune system. We focused on this subunit because GABA-A receptors that contain it become significantly more sensitive to steroid hormones. We collected 80 blood samples from reproductive age women for the purpose of analyzing dehydroepiandrosterone (DHEA), 17β-estradiol, progesterone, and allopregnanolone using liquid chromatography<em>-</em>mass spectrometry <em>(</em>LC<em>-</em>MS). Furthermore, we extracted peripheral blood mononuclear cells (PBMCs) for determining mRNA expression levels of GABA-A receptor genes encoding the δ and ε subunits. We constructed linear mixed effect models for each GABA-A receptor subunit with all 4 steroid hormones, age, and age of menarche as predictors. Whereas DHEA was significantly associated with δ subunit expression (t-value = 2.981; p = 0.003), in line with our hypothesis, none of the steroid hormones were significantly associated with the expression of the ε subunit. Results of this study indicate that significant interactions between hormones from the steroid hormone biosynthesis pathway and GABAergic machinery from the immune cells may be utilized to expand models examining the molecular basis of inflammatory conditions.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0960076024000736/pdfft?md5=38848b83ff9234606c072c0fe0b1d22e&pid=1-s2.0-S0960076024000736-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960076024000736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960076024000736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Positive association between dehydroepiandrosterone (DHEA) and gene expression of the gamma-aminobutyric acid (GABA-A) receptor δ subunit
Gamma-aminobutyric acid A (GABA-A) receptors in the cells of the immune system enhance anti-inflammatory responses by regulating cytokine secretion, cytotoxic responses, and cell activation. In the CNS, the formation of GABA-A subunits into a pentameric structure has been extensively studied; however, no such study has been conducted in the immune system. The objective of the present study was to examine associations between the levels of steroid hormones and GABA-A receptor δ subunit expression in the immune system. We focused on this subunit because GABA-A receptors that contain it become significantly more sensitive to steroid hormones. We collected 80 blood samples from reproductive age women for the purpose of analyzing dehydroepiandrosterone (DHEA), 17β-estradiol, progesterone, and allopregnanolone using liquid chromatography-mass spectrometry (LC-MS). Furthermore, we extracted peripheral blood mononuclear cells (PBMCs) for determining mRNA expression levels of GABA-A receptor genes encoding the δ and ε subunits. We constructed linear mixed effect models for each GABA-A receptor subunit with all 4 steroid hormones, age, and age of menarche as predictors. Whereas DHEA was significantly associated with δ subunit expression (t-value = 2.981; p = 0.003), in line with our hypothesis, none of the steroid hormones were significantly associated with the expression of the ε subunit. Results of this study indicate that significant interactions between hormones from the steroid hormone biosynthesis pathway and GABAergic machinery from the immune cells may be utilized to expand models examining the molecular basis of inflammatory conditions.