Tucker H. Wheeler , Bharath Tata , Rosanna Bolin , James A. Nabity
{"title":"可扩展折纸多层隔热材料的热特性分析","authors":"Tucker H. Wheeler , Bharath Tata , Rosanna Bolin , James A. Nabity","doi":"10.1016/j.cryogenics.2024.103835","DOIUrl":null,"url":null,"abstract":"<div><p>Spacecraft commonly use multilayer insulation (MLI) for passive thermal control, however deployable structures such as telescoping booms impose the need to stow MLI preflight and extend with the structure for in flight operation. This paper investigates an octagonal origami folding pattern that allows predictable stowage and extension of multilayer insulation. Feasibility was demonstrated to fold, compress and extend a MLI blanket comprising 10 layers of aluminized Kapton, each separated by a layer of scrim cloth. Both folded and unfolded 10-layer MLI blankets were tested in thermal vacuum to characterize heat leak of deployed configurations. The 10-layer origami folded configuration increased thermal conductance and radiative heat transport relative to the unfolded configuration. Degradation factors for heat transport were empirically found to be <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mn>2.5</mn><mo>±</mo><mn>0.3</mn></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>=</mo><mn>1.3</mn><mo>±</mo><mn>0.2</mn></math></span> for effective thermal conductance and emittance, respectively.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extendable origami multilayer insulation thermal characterization\",\"authors\":\"Tucker H. Wheeler , Bharath Tata , Rosanna Bolin , James A. Nabity\",\"doi\":\"10.1016/j.cryogenics.2024.103835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spacecraft commonly use multilayer insulation (MLI) for passive thermal control, however deployable structures such as telescoping booms impose the need to stow MLI preflight and extend with the structure for in flight operation. This paper investigates an octagonal origami folding pattern that allows predictable stowage and extension of multilayer insulation. Feasibility was demonstrated to fold, compress and extend a MLI blanket comprising 10 layers of aluminized Kapton, each separated by a layer of scrim cloth. Both folded and unfolded 10-layer MLI blankets were tested in thermal vacuum to characterize heat leak of deployed configurations. The 10-layer origami folded configuration increased thermal conductance and radiative heat transport relative to the unfolded configuration. Degradation factors for heat transport were empirically found to be <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mn>2.5</mn><mo>±</mo><mn>0.3</mn></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>=</mo><mn>1.3</mn><mo>±</mo><mn>0.2</mn></math></span> for effective thermal conductance and emittance, respectively.</p></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227524000559\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524000559","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Spacecraft commonly use multilayer insulation (MLI) for passive thermal control, however deployable structures such as telescoping booms impose the need to stow MLI preflight and extend with the structure for in flight operation. This paper investigates an octagonal origami folding pattern that allows predictable stowage and extension of multilayer insulation. Feasibility was demonstrated to fold, compress and extend a MLI blanket comprising 10 layers of aluminized Kapton, each separated by a layer of scrim cloth. Both folded and unfolded 10-layer MLI blankets were tested in thermal vacuum to characterize heat leak of deployed configurations. The 10-layer origami folded configuration increased thermal conductance and radiative heat transport relative to the unfolded configuration. Degradation factors for heat transport were empirically found to be and for effective thermal conductance and emittance, respectively.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics