气温升高有利于抑制防御的食草动物

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY Journal of Pest Science Pub Date : 2024-04-20 DOI:10.1007/s10340-024-01781-2
Jéssica Teodoro-Paulo, Jacques A. Deere, João Valeriano-Santos, Steven Charlesworth, Alison B. Duncan, Merijn R. Kant, Juan M. Alba
{"title":"气温升高有利于抑制防御的食草动物","authors":"Jéssica Teodoro-Paulo, Jacques A. Deere, João Valeriano-Santos, Steven Charlesworth, Alison B. Duncan, Merijn R. Kant, Juan M. Alba","doi":"10.1007/s10340-024-01781-2","DOIUrl":null,"url":null,"abstract":"<p>Rising temperatures due to climate change are predicted to accelerate the life cycle of arthropod herbivores thereby exacerbating pest formation. Notorious pests like spider mites thrive in areas with high temperatures (32–35 °C), and it is predicted that the size and number of such areas will expand in the coming decades. Higher temperatures can directly accelerate population growth, but also indirectly affect them through changes in the plant's defensive mechanisms. Spider mites have been shown to adapt to plant defences, with natural selection favouring defence-suppressing traits. However, it is not known to what extent suppression is affected by rising temperatures and how this might tie into the rate of adaptation and pest damage. In this study, we investigated the effect of two temperatures (25 °C and 32 °C), on the spider mite–tomato interaction, predicting the influence of rising temperatures on favouring defence-adapted mites. We found that all mite strains caused more plant damage at 32 °C, but temperature did not affect the overall patterns of induction and suppression of defence genes. Although fecundity was higher for all strains at 32 °C, juvenile and adult survival was lower, especially for inducer mites. With these data, we parametrized population models for the two strains over three months, indicating that suppressor mites might displace inducers at the higher temperature, either when it is constant or in the form of heat waves. Our models predict that in areas with higher temperatures, defence-suppressing mites are favoured, which will accelerate and consequently spur pest formation.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rising temperatures favour defence-suppressing herbivores\",\"authors\":\"Jéssica Teodoro-Paulo, Jacques A. Deere, João Valeriano-Santos, Steven Charlesworth, Alison B. Duncan, Merijn R. Kant, Juan M. Alba\",\"doi\":\"10.1007/s10340-024-01781-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rising temperatures due to climate change are predicted to accelerate the life cycle of arthropod herbivores thereby exacerbating pest formation. Notorious pests like spider mites thrive in areas with high temperatures (32–35 °C), and it is predicted that the size and number of such areas will expand in the coming decades. Higher temperatures can directly accelerate population growth, but also indirectly affect them through changes in the plant's defensive mechanisms. Spider mites have been shown to adapt to plant defences, with natural selection favouring defence-suppressing traits. However, it is not known to what extent suppression is affected by rising temperatures and how this might tie into the rate of adaptation and pest damage. In this study, we investigated the effect of two temperatures (25 °C and 32 °C), on the spider mite–tomato interaction, predicting the influence of rising temperatures on favouring defence-adapted mites. We found that all mite strains caused more plant damage at 32 °C, but temperature did not affect the overall patterns of induction and suppression of defence genes. Although fecundity was higher for all strains at 32 °C, juvenile and adult survival was lower, especially for inducer mites. With these data, we parametrized population models for the two strains over three months, indicating that suppressor mites might displace inducers at the higher temperature, either when it is constant or in the form of heat waves. Our models predict that in areas with higher temperatures, defence-suppressing mites are favoured, which will accelerate and consequently spur pest formation.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01781-2\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01781-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

据预测,气候变化导致的气温升高将加速节肢动物食草动物的生命周期,从而加剧害虫的形成。蜘蛛螨等臭名昭著的害虫在气温较高(32-35 °C)的地区生长旺盛,据预测,未来几十年此类地区的面积和数量都将扩大。温度升高会直接加速害虫数量的增长,但也会通过改变植物的防御机制间接影响害虫。事实证明,蜘蛛螨能适应植物的防御机制,自然选择有利于抑制防御的特性。然而,人们还不知道气温升高会在多大程度上影响蛛螨的抑制作用,也不知道这将如何影响蛛螨的适应速度和害虫危害。在这项研究中,我们调查了两种温度(25 °C和32 °C)对蜘蛛螨与番茄相互作用的影响,并预测了温度升高对有利于适应防御的螨类的影响。我们发现,所有螨株在 32 °C时对植物造成的损害都更大,但温度并不影响防御基因诱导和抑制的总体模式。虽然 32 °C时所有螨株的繁殖率都较高,但幼螨和成螨的存活率都较低,尤其是诱导螨。根据这些数据,我们对两个品系三个月的种群模型进行了参数化,结果表明,在较高温度下,抑制螨可能会取代诱导螨,无论是在温度恒定时还是在热浪形式下。我们的模型预测,在温度较高的地区,防御抑制螨会受到青睐,这将加速害虫的形成,从而刺激害虫的繁殖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rising temperatures favour defence-suppressing herbivores

Rising temperatures due to climate change are predicted to accelerate the life cycle of arthropod herbivores thereby exacerbating pest formation. Notorious pests like spider mites thrive in areas with high temperatures (32–35 °C), and it is predicted that the size and number of such areas will expand in the coming decades. Higher temperatures can directly accelerate population growth, but also indirectly affect them through changes in the plant's defensive mechanisms. Spider mites have been shown to adapt to plant defences, with natural selection favouring defence-suppressing traits. However, it is not known to what extent suppression is affected by rising temperatures and how this might tie into the rate of adaptation and pest damage. In this study, we investigated the effect of two temperatures (25 °C and 32 °C), on the spider mite–tomato interaction, predicting the influence of rising temperatures on favouring defence-adapted mites. We found that all mite strains caused more plant damage at 32 °C, but temperature did not affect the overall patterns of induction and suppression of defence genes. Although fecundity was higher for all strains at 32 °C, juvenile and adult survival was lower, especially for inducer mites. With these data, we parametrized population models for the two strains over three months, indicating that suppressor mites might displace inducers at the higher temperature, either when it is constant or in the form of heat waves. Our models predict that in areas with higher temperatures, defence-suppressing mites are favoured, which will accelerate and consequently spur pest formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
期刊最新文献
Identifying ecological factors mediating the spread of three invasive mosquito species: citizen science informed prediction Climate-related risk to maize crops in China from Fall Armyworm, Spodoptera frugiperda Dual function of the Tuta absoluta 3-phosphoinositide-dependent protein kinase-1 in pupa ecdysis and adult reproduction Preimaginal treatment of Trichogramma evanescens and T. pintoi with two novel insecticides, afidopyropen and broflanilide: the lethal, sublethal and transgenerational effects Sublethal effects of lambda-cyhalothrin on the biological characteristics, detoxification enzymes, and genes of the papaya mealybug, Paracoccus marginatus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1