航空公司评论处理:利用深度迁移学习进行抽象概括和基于评分的情感分类

Ayesha Ayub Syed , Ford Lumban Gaol , Alfred Boediman , Widodo Budiharto
{"title":"航空公司评论处理:利用深度迁移学习进行抽象概括和基于评分的情感分类","authors":"Ayesha Ayub Syed ,&nbsp;Ford Lumban Gaol ,&nbsp;Alfred Boediman ,&nbsp;Widodo Budiharto","doi":"10.1016/j.jjimei.2024.100238","DOIUrl":null,"url":null,"abstract":"<div><p>Opinion summarization and sentiment classification are key processes for understanding, analyzing, and leveraging information from customer opinions. The rapid and ceaseless increase in big data of reviews on e-commerce platforms, social media, or review portals becomes a stimulus for the automation of these processes. In recent years, deep transfer learning has opted to solve many challenging tasks in Natural Language Processing (NLP) relieving the hassles of exhaustive training and the requirement of extensive labelled datasets. In this work, we propose frameworks for Abstractive Summarization (ABS) and Sentiment Analysis (SA) of airline reviews using Pretrained Language Models (PLM). The abstractive summarization model goes through two finetuning stages, the first one, for domain adaptation and the second one, for final task learning. Several studies in the literature empirically demonstrate that review rating has a positive correlation with sentiment valence. For the sentiment classification framework, we used the rating value as a signal to determine the review sentiment, and the model is built on top of BERT (Bidirectional Encoder Representations from Transformers) architecture. We evaluated our models comprehensively with multiple metrics. Our results indicate competitive performance of the models in terms of most of the evaluation metrics.</p></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"4 2","pages":"Article 100238"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667096824000272/pdfft?md5=e4d34030876210ba53cfa8b808c29a9e&pid=1-s2.0-S2667096824000272-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Airline reviews processing: Abstractive summarization and rating-based sentiment classification using deep transfer learning\",\"authors\":\"Ayesha Ayub Syed ,&nbsp;Ford Lumban Gaol ,&nbsp;Alfred Boediman ,&nbsp;Widodo Budiharto\",\"doi\":\"10.1016/j.jjimei.2024.100238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Opinion summarization and sentiment classification are key processes for understanding, analyzing, and leveraging information from customer opinions. The rapid and ceaseless increase in big data of reviews on e-commerce platforms, social media, or review portals becomes a stimulus for the automation of these processes. In recent years, deep transfer learning has opted to solve many challenging tasks in Natural Language Processing (NLP) relieving the hassles of exhaustive training and the requirement of extensive labelled datasets. In this work, we propose frameworks for Abstractive Summarization (ABS) and Sentiment Analysis (SA) of airline reviews using Pretrained Language Models (PLM). The abstractive summarization model goes through two finetuning stages, the first one, for domain adaptation and the second one, for final task learning. Several studies in the literature empirically demonstrate that review rating has a positive correlation with sentiment valence. For the sentiment classification framework, we used the rating value as a signal to determine the review sentiment, and the model is built on top of BERT (Bidirectional Encoder Representations from Transformers) architecture. We evaluated our models comprehensively with multiple metrics. Our results indicate competitive performance of the models in terms of most of the evaluation metrics.</p></div>\",\"PeriodicalId\":100699,\"journal\":{\"name\":\"International Journal of Information Management Data Insights\",\"volume\":\"4 2\",\"pages\":\"Article 100238\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000272/pdfft?md5=e4d34030876210ba53cfa8b808c29a9e&pid=1-s2.0-S2667096824000272-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Management Data Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096824000272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

意见总结和情感分类是理解、分析和利用客户意见信息的关键流程。电子商务平台、社交媒体或评论门户网站上评论大数据的快速、持续增长,刺激了这些流程的自动化。近年来,深度迁移学习已被用于解决自然语言处理(NLP)中的许多挑战性任务,从而减轻了详尽训练和大量标记数据集要求的麻烦。在这项工作中,我们提出了使用预训练语言模型(PLM)对航空公司评论进行抽象总结(ABS)和情感分析(SA)的框架。抽象总结模型需要经历两个微调阶段,第一个阶段用于领域适应,第二个阶段用于最终任务学习。文献中的一些研究从经验上证明,评论等级与情感价位呈正相关。在情感分类框架中,我们使用评分值作为判断评论情感的信号,并在 BERT(来自变换器的双向编码器表示)架构之上构建了模型。我们用多个指标对模型进行了全面评估。我们的结果表明,在大多数评估指标方面,模型的性能都很有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Airline reviews processing: Abstractive summarization and rating-based sentiment classification using deep transfer learning

Opinion summarization and sentiment classification are key processes for understanding, analyzing, and leveraging information from customer opinions. The rapid and ceaseless increase in big data of reviews on e-commerce platforms, social media, or review portals becomes a stimulus for the automation of these processes. In recent years, deep transfer learning has opted to solve many challenging tasks in Natural Language Processing (NLP) relieving the hassles of exhaustive training and the requirement of extensive labelled datasets. In this work, we propose frameworks for Abstractive Summarization (ABS) and Sentiment Analysis (SA) of airline reviews using Pretrained Language Models (PLM). The abstractive summarization model goes through two finetuning stages, the first one, for domain adaptation and the second one, for final task learning. Several studies in the literature empirically demonstrate that review rating has a positive correlation with sentiment valence. For the sentiment classification framework, we used the rating value as a signal to determine the review sentiment, and the model is built on top of BERT (Bidirectional Encoder Representations from Transformers) architecture. We evaluated our models comprehensively with multiple metrics. Our results indicate competitive performance of the models in terms of most of the evaluation metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
期刊最新文献
Integrating trust and satisfaction into the UTAUT model to predict Chatbot adoption – A comparison between Gen-Z and Millennials Assessing industry 5.0 readiness—Prototype of a holistic digital index to evaluate sustainability, resilience and human-centered factors CovKG: A Covid-19 Knowledge Graph for enabling multidimensional analytics on Covid-19 epidemiological data considering spatiotemporal, environmental, health, and socioeconomic aspects Enhancing customer retention with machine learning: A comparative analysis of ensemble models for accurate churn prediction Customization of health insurance premiums using machine learning and explainable AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1