深红到近红外光吸收光催化剂分子设计的最新进展

IF 11.5 Q1 CHEMISTRY, PHYSICAL Chem Catalysis Pub Date : 2024-04-17 DOI:10.1016/j.checat.2024.100973
Minling Zhong, Yujie Sun
{"title":"深红到近红外光吸收光催化剂分子设计的最新进展","authors":"Minling Zhong, Yujie Sun","doi":"10.1016/j.checat.2024.100973","DOIUrl":null,"url":null,"abstract":"<p>Photocatalysis has traditionally relied on photocatalysts that primarily absorb short-wavelength ultraviolet-visible (UV-vis) light. However, recent advancements have led to the development of photocatalysts that can absorb deep-red to near-infrared light. These near-infrared photocatalysts (NIR-PCs) offer distinct advantages over traditional UV-vis photocatalysts, including deeper tissue penetration and reduced interference from competing absorption processes. Herein, we summarize the latest advancements in their molecular design based on three activation mechanisms: one-photon absorption, triplet-triplet annihilation upconversion, and two-photon absorption. This review aims to present not only various organic transformations facilitated by NIR-PCs but also the diverse molecular engineering strategies that have been employed in the design and development of NIR-PCs, particularly focusing on those with exceptional absorption capabilities in the NIR region. Finally, a brief overview of the current challenges and opportunities for future explorations of NIR photocatalysis is presented, underscoring the growing significance of NIR-PCs in advancing the frontiers of photocatalysis.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advancements in the molecular design of deep-red to near-infrared light-absorbing photocatalysts\",\"authors\":\"Minling Zhong, Yujie Sun\",\"doi\":\"10.1016/j.checat.2024.100973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photocatalysis has traditionally relied on photocatalysts that primarily absorb short-wavelength ultraviolet-visible (UV-vis) light. However, recent advancements have led to the development of photocatalysts that can absorb deep-red to near-infrared light. These near-infrared photocatalysts (NIR-PCs) offer distinct advantages over traditional UV-vis photocatalysts, including deeper tissue penetration and reduced interference from competing absorption processes. Herein, we summarize the latest advancements in their molecular design based on three activation mechanisms: one-photon absorption, triplet-triplet annihilation upconversion, and two-photon absorption. This review aims to present not only various organic transformations facilitated by NIR-PCs but also the diverse molecular engineering strategies that have been employed in the design and development of NIR-PCs, particularly focusing on those with exceptional absorption capabilities in the NIR region. Finally, a brief overview of the current challenges and opportunities for future explorations of NIR photocatalysis is presented, underscoring the growing significance of NIR-PCs in advancing the frontiers of photocatalysis.</p>\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2024.100973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.100973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化传统上依赖于主要吸收短波长紫外-可见光(UV-vis)的光催化剂。然而,最近的进步促使人们开发出了能够吸收深红光到近红外光的光催化剂。与传统的紫外-可见光光催化剂相比,这些近红外光催化剂(NIR-PCs)具有明显的优势,包括更深的组织穿透性和减少竞争吸收过程的干扰。在此,我们总结了基于三种激活机制的近红外光催化剂分子设计的最新进展:单光子吸收、三重-三重湮灭上转换和双光子吸收。本综述不仅要介绍近红外多氯联苯促进的各种有机转化,还要介绍在设计和开发近红外多氯联苯过程中采用的各种分子工程策略,尤其要关注那些在近红外区域具有特殊吸收能力的多氯联苯。最后,简要概述了近红外光催化目前面临的挑战和未来探索的机遇,强调了近红外光催化材料在推动光催化前沿领域发展方面日益重要的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advancements in the molecular design of deep-red to near-infrared light-absorbing photocatalysts

Photocatalysis has traditionally relied on photocatalysts that primarily absorb short-wavelength ultraviolet-visible (UV-vis) light. However, recent advancements have led to the development of photocatalysts that can absorb deep-red to near-infrared light. These near-infrared photocatalysts (NIR-PCs) offer distinct advantages over traditional UV-vis photocatalysts, including deeper tissue penetration and reduced interference from competing absorption processes. Herein, we summarize the latest advancements in their molecular design based on three activation mechanisms: one-photon absorption, triplet-triplet annihilation upconversion, and two-photon absorption. This review aims to present not only various organic transformations facilitated by NIR-PCs but also the diverse molecular engineering strategies that have been employed in the design and development of NIR-PCs, particularly focusing on those with exceptional absorption capabilities in the NIR region. Finally, a brief overview of the current challenges and opportunities for future explorations of NIR photocatalysis is presented, underscoring the growing significance of NIR-PCs in advancing the frontiers of photocatalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
期刊最新文献
An electrocatalytic oxidative approach to synthesis urea N-methylpiperidine catalyzes efficient closed-loop recycling of polyesters and polycarbonates Predicting hydroformylation regioselectivity from literature data via machine learning Catalyzing the future Control of the electron spin state for enhancing plasmonic nitrogen fixation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1