基于聚类、图建模和深度学习的大型引文数据学术推荐系统

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge and Information Systems Pub Date : 2024-04-18 DOI:10.1007/s10115-024-02094-7
Vaios Stergiopoulos, Michael Vassilakopoulos, Eleni Tousidou, Antonio Corral
{"title":"基于聚类、图建模和深度学习的大型引文数据学术推荐系统","authors":"Vaios Stergiopoulos, Michael Vassilakopoulos, Eleni Tousidou, Antonio Corral","doi":"10.1007/s10115-024-02094-7","DOIUrl":null,"url":null,"abstract":"<p>Recommendation (recommender) systems (RS) have played a significant role in both research and industry in recent years. In the area of academia, there is a need to help researchers discover the most appropriate and relevant scientific information through recommendations. Nevertheless, we argue that there is a major gap between academic state-of-the-art RS and real-world problems. In this paper, we present a novel multi-staged RS based on clustering, graph modeling and deep learning that manages to run on a full dataset (scientific digital library) in the magnitude of millions users and items (papers). We run several tests (experiments/evaluation) as a means to find the best approach regarding the tuning of our system; so, we present and compare three versions of our RS regarding recall and NDCG metrics. The results show that a multi-staged RS that utilizes a variety of techniques and algorithms is able to face real-world problems and large academic datasets. In this way, we suggest a way to close or minimize the gap between research and industry value RS.\n</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"207 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An academic recommender system on large citation data based on clustering, graph modeling and deep learning\",\"authors\":\"Vaios Stergiopoulos, Michael Vassilakopoulos, Eleni Tousidou, Antonio Corral\",\"doi\":\"10.1007/s10115-024-02094-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recommendation (recommender) systems (RS) have played a significant role in both research and industry in recent years. In the area of academia, there is a need to help researchers discover the most appropriate and relevant scientific information through recommendations. Nevertheless, we argue that there is a major gap between academic state-of-the-art RS and real-world problems. In this paper, we present a novel multi-staged RS based on clustering, graph modeling and deep learning that manages to run on a full dataset (scientific digital library) in the magnitude of millions users and items (papers). We run several tests (experiments/evaluation) as a means to find the best approach regarding the tuning of our system; so, we present and compare three versions of our RS regarding recall and NDCG metrics. The results show that a multi-staged RS that utilizes a variety of techniques and algorithms is able to face real-world problems and large academic datasets. In this way, we suggest a way to close or minimize the gap between research and industry value RS.\\n</p>\",\"PeriodicalId\":54749,\"journal\":{\"name\":\"Knowledge and Information Systems\",\"volume\":\"207 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10115-024-02094-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02094-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,推荐(recommender)系统(RS)在科研和工业领域都发挥了重要作用。在学术领域,需要通过推荐帮助研究人员发现最合适、最相关的科学信息。然而,我们认为,学术界最先进的 RS 与现实世界中的问题之间还存在很大差距。在本文中,我们提出了一种基于聚类、图建模和深度学习的新型多阶段 RS,它可以在数百万用户和条目(论文)的完整数据集(科学数字图书馆)上运行。我们进行了多项测试(实验/评估),以找到调整系统的最佳方法;因此,我们介绍并比较了三个版本的 RS 的召回率和 NDCG 指标。结果表明,利用各种技术和算法的多阶段 RS 能够应对现实世界的问题和大型学术数据集。因此,我们提出了一种方法来缩小或最小化研究与行业价值 RS 之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An academic recommender system on large citation data based on clustering, graph modeling and deep learning

Recommendation (recommender) systems (RS) have played a significant role in both research and industry in recent years. In the area of academia, there is a need to help researchers discover the most appropriate and relevant scientific information through recommendations. Nevertheless, we argue that there is a major gap between academic state-of-the-art RS and real-world problems. In this paper, we present a novel multi-staged RS based on clustering, graph modeling and deep learning that manages to run on a full dataset (scientific digital library) in the magnitude of millions users and items (papers). We run several tests (experiments/evaluation) as a means to find the best approach regarding the tuning of our system; so, we present and compare three versions of our RS regarding recall and NDCG metrics. The results show that a multi-staged RS that utilizes a variety of techniques and algorithms is able to face real-world problems and large academic datasets. In this way, we suggest a way to close or minimize the gap between research and industry value RS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge and Information Systems
Knowledge and Information Systems 工程技术-计算机:人工智能
CiteScore
5.70
自引率
7.40%
发文量
152
审稿时长
7.2 months
期刊介绍: Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.
期刊最新文献
Dynamic evolution of causal relationships among cryptocurrencies: an analysis via Bayesian networks Deep multi-semantic fuzzy K-means with adaptive weight adjustment Class incremental named entity recognition without forgetting Spectral clustering with scale fairness constraints Supervised kernel-based multi-modal Bhattacharya distance learning for imbalanced data classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1