Yang Ning, Li Xiang, Jing Hongyuan, Shang Xinna, Shen Ping, Chen Aidong
{"title":"基于级联网络和轻量级关注机制的复杂场景下绝缘体缺陷检测","authors":"Yang Ning, Li Xiang, Jing Hongyuan, Shang Xinna, Shen Ping, Chen Aidong","doi":"10.1007/s12083-024-01682-2","DOIUrl":null,"url":null,"abstract":"<p>The power system stands as a crucial infrastructure pivotal to the country’s modern economic, security and social development. This paper addresses challenges in insulator fault detection on power transmission towers, leveraging the advancements in unmanned aerial vehicles equipped with target detection methods. We propose a novel method for insulator defect detection based on YOLOv5 (You Only Look Once), aiming to mitigate the issues associated with high missed detection rates. Small insulator faults and the limitation of unmanned aerial vehicle on-board capacity make it difficult to detect comprehensively. Firstly, the cluster analysis was carried out on the training data to obtain 9 kinds of better preset anchors for insulator detection, which improved the accuracy of the model to identify the location of targets. Secondly, the base-model is used to detect the insulator region, and the detection results are input into the sub-model to detect the location of faults, so as to form a cascade model, and make full use of the advantages of the two models to solve the problem of high missed detection rate. Finally, a lightweight attention module combining channel attention module and spatial attention module is added in YOLOv5 to improve the base-model’s attention to insulator region and suppress complex background features. Experimental results show that compared with the original model, the average precision of the proposed method for insulator detection is increased by 6.9%, and the missed detection rate of the fault location is 30% lower. Significant improvements in insulator detection performance have been achieved using the method proposed in this paper. It can not only effectively improve the detection accuracy, but also make the missed detection rate lower to meet the requirements of insulator defect detection and fault warning applications in complex environments, which proves that it has a wide range of application prospects in practice, especially in the field of power industry.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"117 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insulator defect detection in complex scenarios based on cascaded networks with lightweight attention mechanism\",\"authors\":\"Yang Ning, Li Xiang, Jing Hongyuan, Shang Xinna, Shen Ping, Chen Aidong\",\"doi\":\"10.1007/s12083-024-01682-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The power system stands as a crucial infrastructure pivotal to the country’s modern economic, security and social development. This paper addresses challenges in insulator fault detection on power transmission towers, leveraging the advancements in unmanned aerial vehicles equipped with target detection methods. We propose a novel method for insulator defect detection based on YOLOv5 (You Only Look Once), aiming to mitigate the issues associated with high missed detection rates. Small insulator faults and the limitation of unmanned aerial vehicle on-board capacity make it difficult to detect comprehensively. Firstly, the cluster analysis was carried out on the training data to obtain 9 kinds of better preset anchors for insulator detection, which improved the accuracy of the model to identify the location of targets. Secondly, the base-model is used to detect the insulator region, and the detection results are input into the sub-model to detect the location of faults, so as to form a cascade model, and make full use of the advantages of the two models to solve the problem of high missed detection rate. Finally, a lightweight attention module combining channel attention module and spatial attention module is added in YOLOv5 to improve the base-model’s attention to insulator region and suppress complex background features. Experimental results show that compared with the original model, the average precision of the proposed method for insulator detection is increased by 6.9%, and the missed detection rate of the fault location is 30% lower. Significant improvements in insulator detection performance have been achieved using the method proposed in this paper. It can not only effectively improve the detection accuracy, but also make the missed detection rate lower to meet the requirements of insulator defect detection and fault warning applications in complex environments, which proves that it has a wide range of application prospects in practice, especially in the field of power industry.</p>\",\"PeriodicalId\":49313,\"journal\":{\"name\":\"Peer-To-Peer Networking and Applications\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer-To-Peer Networking and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12083-024-01682-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01682-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Insulator defect detection in complex scenarios based on cascaded networks with lightweight attention mechanism
The power system stands as a crucial infrastructure pivotal to the country’s modern economic, security and social development. This paper addresses challenges in insulator fault detection on power transmission towers, leveraging the advancements in unmanned aerial vehicles equipped with target detection methods. We propose a novel method for insulator defect detection based on YOLOv5 (You Only Look Once), aiming to mitigate the issues associated with high missed detection rates. Small insulator faults and the limitation of unmanned aerial vehicle on-board capacity make it difficult to detect comprehensively. Firstly, the cluster analysis was carried out on the training data to obtain 9 kinds of better preset anchors for insulator detection, which improved the accuracy of the model to identify the location of targets. Secondly, the base-model is used to detect the insulator region, and the detection results are input into the sub-model to detect the location of faults, so as to form a cascade model, and make full use of the advantages of the two models to solve the problem of high missed detection rate. Finally, a lightweight attention module combining channel attention module and spatial attention module is added in YOLOv5 to improve the base-model’s attention to insulator region and suppress complex background features. Experimental results show that compared with the original model, the average precision of the proposed method for insulator detection is increased by 6.9%, and the missed detection rate of the fault location is 30% lower. Significant improvements in insulator detection performance have been achieved using the method proposed in this paper. It can not only effectively improve the detection accuracy, but also make the missed detection rate lower to meet the requirements of insulator defect detection and fault warning applications in complex environments, which proves that it has a wide range of application prospects in practice, especially in the field of power industry.
期刊介绍:
The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security.
The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain.
Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.