V. K. Singh, Sumit K. Soni, Pradeep K. Shukla, Anju Bajpai, Laxmi
{"title":"施用 Paclobutrazol 改变了芒果园土壤细菌的多样性和丰富度:元基因组研究","authors":"V. K. Singh, Sumit K. Soni, Pradeep K. Shukla, Anju Bajpai, Laxmi","doi":"10.1007/s10341-024-01074-z","DOIUrl":null,"url":null,"abstract":"<p>The soil microbiome regulates plant and soil health by cycling nutrients, reconstructing soil, degrading xenobiotics, and regulating growth. Paclobutrazol (PBZ) is a plant growth regulator that is commonly used to induce flowering, particularly in alternate bearers such as mangoes. However, the long-term persistence of PBZ in the soil causes alteration in the soil microbial community and other living species. In the present study, high-throughput whole metagenome sequencing (WMS) through IlluminaNovaseq 6000 was carried out to ascertain the alteration in microbial diversity in control (T1) and PBZ (T2) contaminated soil of mango orchards. The HTS technology revealed that the PBZ application in the soil specifically recruits and improves the abundance of some specific bacterial groups that are known for their own antimicrobial, xenobiotics degradation, and plant growth-promoting rhizobacteria (PGPR) features. The relative abundance of Proteobacteria, Acidobacteria and Actinobacteria in the soil was found to be greatly improved with the application of PBZ. Shannon, Simpson and InvSimson reflect the bacterial diversity, found to be higher in T1, while Ace and Chao diversity indices showed that the soil bacterial richness was significantly higher in T2. The biological buffering of soils by Actinobacteria, nutrient cycling by Acidobacteria, nitrogen fixation and degradation of high molecular weight compounds like PBZ was evident from this study, indicating microbial bioremediation of PBZ in mango orchards. Further, this study establishes altered community composition of the rhizospheric microbiome due to PBZ treatment, which is the trigger for the recruitment of bacteria supporting growth regulatory activities that subsequently may regulate arboreal phenology.</p>","PeriodicalId":11889,"journal":{"name":"Erwerbs-Obstbau","volume":"16 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Paclobutrazol Altered the Soil Bacterial Diversity and Richness of Mango Orchards: A Metagenomic Study\",\"authors\":\"V. K. Singh, Sumit K. Soni, Pradeep K. Shukla, Anju Bajpai, Laxmi\",\"doi\":\"10.1007/s10341-024-01074-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The soil microbiome regulates plant and soil health by cycling nutrients, reconstructing soil, degrading xenobiotics, and regulating growth. Paclobutrazol (PBZ) is a plant growth regulator that is commonly used to induce flowering, particularly in alternate bearers such as mangoes. However, the long-term persistence of PBZ in the soil causes alteration in the soil microbial community and other living species. In the present study, high-throughput whole metagenome sequencing (WMS) through IlluminaNovaseq 6000 was carried out to ascertain the alteration in microbial diversity in control (T1) and PBZ (T2) contaminated soil of mango orchards. The HTS technology revealed that the PBZ application in the soil specifically recruits and improves the abundance of some specific bacterial groups that are known for their own antimicrobial, xenobiotics degradation, and plant growth-promoting rhizobacteria (PGPR) features. The relative abundance of Proteobacteria, Acidobacteria and Actinobacteria in the soil was found to be greatly improved with the application of PBZ. Shannon, Simpson and InvSimson reflect the bacterial diversity, found to be higher in T1, while Ace and Chao diversity indices showed that the soil bacterial richness was significantly higher in T2. The biological buffering of soils by Actinobacteria, nutrient cycling by Acidobacteria, nitrogen fixation and degradation of high molecular weight compounds like PBZ was evident from this study, indicating microbial bioremediation of PBZ in mango orchards. Further, this study establishes altered community composition of the rhizospheric microbiome due to PBZ treatment, which is the trigger for the recruitment of bacteria supporting growth regulatory activities that subsequently may regulate arboreal phenology.</p>\",\"PeriodicalId\":11889,\"journal\":{\"name\":\"Erwerbs-Obstbau\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Erwerbs-Obstbau\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10341-024-01074-z\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Erwerbs-Obstbau","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10341-024-01074-z","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
Application of Paclobutrazol Altered the Soil Bacterial Diversity and Richness of Mango Orchards: A Metagenomic Study
The soil microbiome regulates plant and soil health by cycling nutrients, reconstructing soil, degrading xenobiotics, and regulating growth. Paclobutrazol (PBZ) is a plant growth regulator that is commonly used to induce flowering, particularly in alternate bearers such as mangoes. However, the long-term persistence of PBZ in the soil causes alteration in the soil microbial community and other living species. In the present study, high-throughput whole metagenome sequencing (WMS) through IlluminaNovaseq 6000 was carried out to ascertain the alteration in microbial diversity in control (T1) and PBZ (T2) contaminated soil of mango orchards. The HTS technology revealed that the PBZ application in the soil specifically recruits and improves the abundance of some specific bacterial groups that are known for their own antimicrobial, xenobiotics degradation, and plant growth-promoting rhizobacteria (PGPR) features. The relative abundance of Proteobacteria, Acidobacteria and Actinobacteria in the soil was found to be greatly improved with the application of PBZ. Shannon, Simpson and InvSimson reflect the bacterial diversity, found to be higher in T1, while Ace and Chao diversity indices showed that the soil bacterial richness was significantly higher in T2. The biological buffering of soils by Actinobacteria, nutrient cycling by Acidobacteria, nitrogen fixation and degradation of high molecular weight compounds like PBZ was evident from this study, indicating microbial bioremediation of PBZ in mango orchards. Further, this study establishes altered community composition of the rhizospheric microbiome due to PBZ treatment, which is the trigger for the recruitment of bacteria supporting growth regulatory activities that subsequently may regulate arboreal phenology.
期刊介绍:
Erwerbs-Obstbau ist als internationales Fachorgan die führende Zeitschrift für Wissenschaftler, Berater und Praktiker im Erwerbsobstbau.
Neben den wirtschaftlich führenden Obstarten widmet sich die Zeitschrift auch den Wildobstarten bzw. neuen Obstarten und deren zukünftige Bedeutung für die Ernährung des Menschen. Originalarbeiten mit zahlreichen Abbildungen, Übersichten und Tabellen stellen anwendungsbezogen den neuesten Kenntnisstand dar und schlagen eine Brücke zwischen Wissenschaft und Praxis.
Die nach einem Begutachtungsprozeß zur Publikation angenommenen Originalarbeiten erscheinen in deutscher und englischer Sprache mit deutschem und englischem Titel. Review-Artikel, Buchbesprechungen und aktuelle Fachinformationen runden das Angebot ab.