Khang A. Luong, Thang Le-Duc, Seunghye Lee, Jaehong Lee
{"title":"用于解决逆问题的新型归一化降阶物理信息神经网络","authors":"Khang A. Luong, Thang Le-Duc, Seunghye Lee, Jaehong Lee","doi":"10.1007/s00366-024-01971-7","DOIUrl":null,"url":null,"abstract":"<p>The utilization of Physics-informed Neural Networks (PINNs) in deciphering inverse problems has gained significant attention in recent years. However, the PINN training process for inverse problems is notably restricted due to gradient failures provoked by magnitudes of partial differential equations (PDEs) parameters or source functions. To address these matters, normalized reduced-order physics-informed neural network (nr-PINN) is developed in this study. The goal of the nr-PINN is to reconfigure the original PDE into a system of normalized lower-order PDEs through two sequential steps. To start with, self-homeomorphisms of the PDEs are implemented via scaling factors determined based on measured data. Afterward, each normalized PDE is transformed into a system of lower-order PDEs by primary and secondary variables. Besides, a technique to exactly impose many types of boundary conditions (BCs) by redefining NNs outputs is developed in the context of reduced-order method. The advantages of the nr-PINN model over the original one regarding solution accuracy and training cost are demonstrated through several inverse problems in solid mechanics with different types of PDEs and BCs.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"25 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel normalized reduced-order physics-informed neural network for solving inverse problems\",\"authors\":\"Khang A. Luong, Thang Le-Duc, Seunghye Lee, Jaehong Lee\",\"doi\":\"10.1007/s00366-024-01971-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The utilization of Physics-informed Neural Networks (PINNs) in deciphering inverse problems has gained significant attention in recent years. However, the PINN training process for inverse problems is notably restricted due to gradient failures provoked by magnitudes of partial differential equations (PDEs) parameters or source functions. To address these matters, normalized reduced-order physics-informed neural network (nr-PINN) is developed in this study. The goal of the nr-PINN is to reconfigure the original PDE into a system of normalized lower-order PDEs through two sequential steps. To start with, self-homeomorphisms of the PDEs are implemented via scaling factors determined based on measured data. Afterward, each normalized PDE is transformed into a system of lower-order PDEs by primary and secondary variables. Besides, a technique to exactly impose many types of boundary conditions (BCs) by redefining NNs outputs is developed in the context of reduced-order method. The advantages of the nr-PINN model over the original one regarding solution accuracy and training cost are demonstrated through several inverse problems in solid mechanics with different types of PDEs and BCs.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-01971-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-01971-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A novel normalized reduced-order physics-informed neural network for solving inverse problems
The utilization of Physics-informed Neural Networks (PINNs) in deciphering inverse problems has gained significant attention in recent years. However, the PINN training process for inverse problems is notably restricted due to gradient failures provoked by magnitudes of partial differential equations (PDEs) parameters or source functions. To address these matters, normalized reduced-order physics-informed neural network (nr-PINN) is developed in this study. The goal of the nr-PINN is to reconfigure the original PDE into a system of normalized lower-order PDEs through two sequential steps. To start with, self-homeomorphisms of the PDEs are implemented via scaling factors determined based on measured data. Afterward, each normalized PDE is transformed into a system of lower-order PDEs by primary and secondary variables. Besides, a technique to exactly impose many types of boundary conditions (BCs) by redefining NNs outputs is developed in the context of reduced-order method. The advantages of the nr-PINN model over the original one regarding solution accuracy and training cost are demonstrated through several inverse problems in solid mechanics with different types of PDEs and BCs.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.