P. Das, S. S. Acharyya, T. K. Mondal, V. Thirukumaran
{"title":"评估高纵横比刚性碎屑岩的拉伸断裂情况","authors":"P. Das, S. S. Acharyya, T. K. Mondal, V. Thirukumaran","doi":"10.1134/s0016852124700080","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We investigate how a highly elliptical and mechanically rigid clast embedded in an infinite rock mass respond to the far-field stresses. The numerical analysis is carried out on elliptical clasts with aspect ratios ranging from 13.5 to 58.5, oriented at a right angle to the maximum far-field stress. A 2D plane strain model has been adopted to decipher the states of stress inside elliptical clasts. We argue that the tensile stress within the clasts gets enhanced and develops systematic mode-I (tensile) fractures within it as the far-field stress increases. We conclude that the intra-clast tensile stress decreases with increasing clast ellipticity, i.e., tensile fractures develop more easily within clasts with higher aspect ratios (~>20) while a higher far field tensile stress is required to fracture clasts with lower aspect ratios. We also interpret that stress enhancement is independent of the clast area and inter-focii distance of the clast, whilst the aspect ratio of the clast is found to be crucial for the development of tensile fractures within the elliptical clast for a constant material property.</p>","PeriodicalId":55097,"journal":{"name":"Geotectonics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Tensile Fractures in Rigid Clasts with Very High Aspect Ratio\",\"authors\":\"P. Das, S. S. Acharyya, T. K. Mondal, V. Thirukumaran\",\"doi\":\"10.1134/s0016852124700080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>We investigate how a highly elliptical and mechanically rigid clast embedded in an infinite rock mass respond to the far-field stresses. The numerical analysis is carried out on elliptical clasts with aspect ratios ranging from 13.5 to 58.5, oriented at a right angle to the maximum far-field stress. A 2D plane strain model has been adopted to decipher the states of stress inside elliptical clasts. We argue that the tensile stress within the clasts gets enhanced and develops systematic mode-I (tensile) fractures within it as the far-field stress increases. We conclude that the intra-clast tensile stress decreases with increasing clast ellipticity, i.e., tensile fractures develop more easily within clasts with higher aspect ratios (~>20) while a higher far field tensile stress is required to fracture clasts with lower aspect ratios. We also interpret that stress enhancement is independent of the clast area and inter-focii distance of the clast, whilst the aspect ratio of the clast is found to be crucial for the development of tensile fractures within the elliptical clast for a constant material property.</p>\",\"PeriodicalId\":55097,\"journal\":{\"name\":\"Geotectonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotectonics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s0016852124700080\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotectonics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0016852124700080","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 我们研究了嵌入无限岩体中的高椭圆形机械刚性岩屑对远场应力的响应。数值分析的对象是长宽比从 13.5 到 58.5 的椭圆形岩屑,其方向与最大远场应力成直角。采用二维平面应变模型来解读椭圆形岩屑内部的应力状态。我们认为,随着远场应力的增加,碎屑内部的拉应力会增强,并在其内部形成系统的 I 型(拉伸)断裂。我们的结论是,碎屑内部的拉应力随着碎屑椭圆度的增加而减小,也就是说,在长宽比(~>20)较高的碎屑内部更容易形成拉断裂,而长宽比较低的碎屑则需要较高的远场拉应力才能断裂。我们还解释说,应力增强与岩屑面积和岩屑间距无关,而在材料性质不变的情况下,岩屑的纵横比对椭圆形岩屑内拉伸断裂的发展至关重要。
Evaluating Tensile Fractures in Rigid Clasts with Very High Aspect Ratio
Abstract
We investigate how a highly elliptical and mechanically rigid clast embedded in an infinite rock mass respond to the far-field stresses. The numerical analysis is carried out on elliptical clasts with aspect ratios ranging from 13.5 to 58.5, oriented at a right angle to the maximum far-field stress. A 2D plane strain model has been adopted to decipher the states of stress inside elliptical clasts. We argue that the tensile stress within the clasts gets enhanced and develops systematic mode-I (tensile) fractures within it as the far-field stress increases. We conclude that the intra-clast tensile stress decreases with increasing clast ellipticity, i.e., tensile fractures develop more easily within clasts with higher aspect ratios (~>20) while a higher far field tensile stress is required to fracture clasts with lower aspect ratios. We also interpret that stress enhancement is independent of the clast area and inter-focii distance of the clast, whilst the aspect ratio of the clast is found to be crucial for the development of tensile fractures within the elliptical clast for a constant material property.
期刊介绍:
Geotectonics publishes articles on general and regional tectonics, structural geology, geodynamics, and experimental tectonics and considers the relation of tectonics to the deep structure of the earth, magmatism, metamorphism, and mineral resources.