A. G. Evgenov, N. V. Petrushin, P. N. Medvedev, I. A. Galushka, S. V. Shurtakov
{"title":"粉末成分特征温度和输入能量密度对选择性激光熔化法生产的镍基和钴基耐热合金微观结构和内部应力的影响。第二部分","authors":"A. G. Evgenov, N. V. Petrushin, P. N. Medvedev, I. A. Galushka, S. V. Shurtakov","doi":"10.1007/s11041-024-00994-7","DOIUrl":null,"url":null,"abstract":"<p>Selective laser melting (SLM) of heat-resistant nickel alloy VZh159 is used to show that at constant energy density the key factor determining the texture and the internal stresses is the hatching distance. At multiple increase in the exposure rate and decrease in the hatching distance, the micropore proportion increases exponentially due to enhancement of the dissipation of the laser radiation caused by reflection in the track overlapping zone.</p>","PeriodicalId":701,"journal":{"name":"Metal Science and Heat Treatment","volume":"65 11-12","pages":"714 - 721"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Powder Composition Characteristic Temperatures And Input Energy Density on Microstructure and Internal Stresses of Nickel- and Cobalt-Based Heat-Resistant Alloys Produced by Selective Laser Melting. Part 2\",\"authors\":\"A. G. Evgenov, N. V. Petrushin, P. N. Medvedev, I. A. Galushka, S. V. Shurtakov\",\"doi\":\"10.1007/s11041-024-00994-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Selective laser melting (SLM) of heat-resistant nickel alloy VZh159 is used to show that at constant energy density the key factor determining the texture and the internal stresses is the hatching distance. At multiple increase in the exposure rate and decrease in the hatching distance, the micropore proportion increases exponentially due to enhancement of the dissipation of the laser radiation caused by reflection in the track overlapping zone.</p>\",\"PeriodicalId\":701,\"journal\":{\"name\":\"Metal Science and Heat Treatment\",\"volume\":\"65 11-12\",\"pages\":\"714 - 721\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metal Science and Heat Treatment\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11041-024-00994-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Science and Heat Treatment","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11041-024-00994-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of Powder Composition Characteristic Temperatures And Input Energy Density on Microstructure and Internal Stresses of Nickel- and Cobalt-Based Heat-Resistant Alloys Produced by Selective Laser Melting. Part 2
Selective laser melting (SLM) of heat-resistant nickel alloy VZh159 is used to show that at constant energy density the key factor determining the texture and the internal stresses is the hatching distance. At multiple increase in the exposure rate and decrease in the hatching distance, the micropore proportion increases exponentially due to enhancement of the dissipation of the laser radiation caused by reflection in the track overlapping zone.
期刊介绍:
Metal Science and Heat Treatment presents new fundamental and practical research in physical metallurgy, heat treatment equipment, and surface engineering.
Topics covered include:
New structural, high temperature, tool and precision steels;
Cold-resistant, corrosion-resistant and radiation-resistant steels;
Steels with rapid decline of induced properties;
Alloys with shape memory effect;
Bulk-amorphyzable metal alloys;
Microcrystalline alloys;
Nano materials and foam materials for medical use.