通过设计自组装空穴传输分子简化高性能有机太阳能电池的制造过程

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-06-19 DOI:10.1016/j.joule.2024.03.013
Zhihao Chen , Shaoqing Zhang , Tao Zhang , Jiangbo Dai , Yue Yu , Huixue Li , Xiaotao Hao , Jianhui Hou
{"title":"通过设计自组装空穴传输分子简化高性能有机太阳能电池的制造过程","authors":"Zhihao Chen ,&nbsp;Shaoqing Zhang ,&nbsp;Tao Zhang ,&nbsp;Jiangbo Dai ,&nbsp;Yue Yu ,&nbsp;Huixue Li ,&nbsp;Xiaotao Hao ,&nbsp;Jianhui Hou","doi":"10.1016/j.joule.2024.03.013","DOIUrl":null,"url":null,"abstract":"<div><p>The commercialization of organic solar cells (OSCs) encompasses overcoming hurdles related to efficiency, stability, cost, and complexity of device fabrication techniques. The elaborate sequential deposition (SD) process for fabricating charge-transport and photoactive layers stands out as a critical challenge. In this study, we synthesized a series of self-assembling hole-transport molecules, namely, BPC-M, BPC-Ph, and BPC-F, to investigate the mechanism within self-assembling deposition (SAD). The synthesized molecules in SAD-processed cells exhibit significantly varied photovoltaic performance. Notably, BPC-M achieves a superior power conversion efficiency of 19.3% in SAD-processed PBDB-TF:eC9 cells. However, cells incorporating BPC-F show significant performance degradation. It is demonstrated that the thermodynamic forces driven by surface free energy, coupled with intermolecular interactions, are pivotal in dictating the self-assembly efficiency. This determines the quality of the self-assembled layer and the residual molecule in the active layer. This study simplifies OSC fabrication and offers a promising approach for the industrialization of OSCs.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 6","pages":"Pages 1723-1734"},"PeriodicalIF":38.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified fabrication of high-performance organic solar cells through the design of self-assembling hole-transport molecules\",\"authors\":\"Zhihao Chen ,&nbsp;Shaoqing Zhang ,&nbsp;Tao Zhang ,&nbsp;Jiangbo Dai ,&nbsp;Yue Yu ,&nbsp;Huixue Li ,&nbsp;Xiaotao Hao ,&nbsp;Jianhui Hou\",\"doi\":\"10.1016/j.joule.2024.03.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The commercialization of organic solar cells (OSCs) encompasses overcoming hurdles related to efficiency, stability, cost, and complexity of device fabrication techniques. The elaborate sequential deposition (SD) process for fabricating charge-transport and photoactive layers stands out as a critical challenge. In this study, we synthesized a series of self-assembling hole-transport molecules, namely, BPC-M, BPC-Ph, and BPC-F, to investigate the mechanism within self-assembling deposition (SAD). The synthesized molecules in SAD-processed cells exhibit significantly varied photovoltaic performance. Notably, BPC-M achieves a superior power conversion efficiency of 19.3% in SAD-processed PBDB-TF:eC9 cells. However, cells incorporating BPC-F show significant performance degradation. It is demonstrated that the thermodynamic forces driven by surface free energy, coupled with intermolecular interactions, are pivotal in dictating the self-assembly efficiency. This determines the quality of the self-assembled layer and the residual molecule in the active layer. This study simplifies OSC fabrication and offers a promising approach for the industrialization of OSCs.</p></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"8 6\",\"pages\":\"Pages 1723-1734\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S254243512400148X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254243512400148X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

有机太阳能电池(OSC)的商业化需要克服与效率、稳定性、成本和器件制造技术复杂性有关的障碍。制造电荷传输层和光活性层的复杂连续沉积(SD)工艺是一项严峻的挑战。在本研究中,我们合成了一系列自组装空穴传输分子,即 BPC-M、BPC-Ph 和 BPC-F,以研究自组装沉积(SAD)的机理。在 SAD 加工的电池中合成的分子表现出显著不同的光伏性能。值得注意的是,BPC-M 在 SAD 处理的 PBDB-TF:eC9 电池中实现了 19.3% 的卓越功率转换效率。然而,含有 BPC-F 的电池则表现出明显的性能下降。研究表明,由表面自由能驱动的热动力与分子间相互作用在决定自组装效率方面起着关键作用。这决定了自组装层的质量和活性层中的残余分子。这项研究简化了 OSC 的制造过程,为 OSC 的产业化提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simplified fabrication of high-performance organic solar cells through the design of self-assembling hole-transport molecules

The commercialization of organic solar cells (OSCs) encompasses overcoming hurdles related to efficiency, stability, cost, and complexity of device fabrication techniques. The elaborate sequential deposition (SD) process for fabricating charge-transport and photoactive layers stands out as a critical challenge. In this study, we synthesized a series of self-assembling hole-transport molecules, namely, BPC-M, BPC-Ph, and BPC-F, to investigate the mechanism within self-assembling deposition (SAD). The synthesized molecules in SAD-processed cells exhibit significantly varied photovoltaic performance. Notably, BPC-M achieves a superior power conversion efficiency of 19.3% in SAD-processed PBDB-TF:eC9 cells. However, cells incorporating BPC-F show significant performance degradation. It is demonstrated that the thermodynamic forces driven by surface free energy, coupled with intermolecular interactions, are pivotal in dictating the self-assembly efficiency. This determines the quality of the self-assembled layer and the residual molecule in the active layer. This study simplifies OSC fabrication and offers a promising approach for the industrialization of OSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Spin regulation through chirality in catalysis Battery health management in the era of big field data Anthracene-based energy storage Technoeconomic analysis of perovskite/silicon tandem solar modules De-doping engineering for efficient and heat-stable perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1