{"title":"用于评估深层岩石动态力学和迁移行为的水力机械耦合实验系统","authors":"R. Chen, G. Zhao, Y. Xu, W. Yao, W. Yao, K. Xia","doi":"10.1007/s11340-024-01063-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The dynamic mechanical properties and permeability evolution of deep rocks under coupled osmotic-mechanical conditions are vital for evaluating the stability of surrounding rock in deep rock engineering and further improving deep mining efficiency. However, there is currently no valid experimental system to measure both the dynamic mechanical response and the permeability evolution of deep rocks.</p><h3>Objective</h3><p>In this study, a novel experimental system is developed for determining dynamic compressive properties and permeability evolution of deep rocks subjected to coupled differential pore pressure and confinement.</p><h3>Methods</h3><p>The experimental system is composed of a dynamic loading system, an in-situ stress system, a differential pore pressure system, and a data acquisition system. The differential pore pressure system is introduced in the dynamic loading system, and the validation of the proposed system is verified by checking the stress wave propagation in the bars and the dynamic force balance on the two loading ends of specimens. It indicates that the differential pore pressure device added to the dynamic loading system barely influences the measurement of the dynamic behaviors of rocks. A homogenous green sandstone (GS) is employed to verify the feasibility and reliability of the proposed system. Dynamic compressive strength, permeability evolution, and failure mode of GS under cyclic dynamic impact loading in combination with coupled osmotic-confining pressure are explored using the proposed system.</p><h3>Results</h3><p>The stress–strain curves change with the increase of impact number, and the cyclic impacts deteriorate the dynamic compressive strength of GS. The permeability of GS first increases and then decreases with the impact number. The differential pore pressure enhanced the permeability of GS under the same impact cycle. The main fracture mode of the GS specimen is mainly compressive-shear fracture in combination with a tensile fracture in the middle of the specimen due to the coupling effect of the reflected stress wave and the osmotic-confining pressure.</p><h3>Conclusions</h3><p>The proposed experimental system is valid and effective to measure and observe the dynamic compressive behaviors and permeability evolution of rocks under coupled osmotic-mechanical conditions.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 6","pages":"895 - 911"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled Hydraulic-Mechanical Experimental System for Evaluating Dynamic Mechanical and Transport Behaviors of Deep Rocks\",\"authors\":\"R. Chen, G. Zhao, Y. Xu, W. Yao, W. Yao, K. Xia\",\"doi\":\"10.1007/s11340-024-01063-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The dynamic mechanical properties and permeability evolution of deep rocks under coupled osmotic-mechanical conditions are vital for evaluating the stability of surrounding rock in deep rock engineering and further improving deep mining efficiency. However, there is currently no valid experimental system to measure both the dynamic mechanical response and the permeability evolution of deep rocks.</p><h3>Objective</h3><p>In this study, a novel experimental system is developed for determining dynamic compressive properties and permeability evolution of deep rocks subjected to coupled differential pore pressure and confinement.</p><h3>Methods</h3><p>The experimental system is composed of a dynamic loading system, an in-situ stress system, a differential pore pressure system, and a data acquisition system. The differential pore pressure system is introduced in the dynamic loading system, and the validation of the proposed system is verified by checking the stress wave propagation in the bars and the dynamic force balance on the two loading ends of specimens. It indicates that the differential pore pressure device added to the dynamic loading system barely influences the measurement of the dynamic behaviors of rocks. A homogenous green sandstone (GS) is employed to verify the feasibility and reliability of the proposed system. Dynamic compressive strength, permeability evolution, and failure mode of GS under cyclic dynamic impact loading in combination with coupled osmotic-confining pressure are explored using the proposed system.</p><h3>Results</h3><p>The stress–strain curves change with the increase of impact number, and the cyclic impacts deteriorate the dynamic compressive strength of GS. The permeability of GS first increases and then decreases with the impact number. The differential pore pressure enhanced the permeability of GS under the same impact cycle. The main fracture mode of the GS specimen is mainly compressive-shear fracture in combination with a tensile fracture in the middle of the specimen due to the coupling effect of the reflected stress wave and the osmotic-confining pressure.</p><h3>Conclusions</h3><p>The proposed experimental system is valid and effective to measure and observe the dynamic compressive behaviors and permeability evolution of rocks under coupled osmotic-mechanical conditions.</p></div>\",\"PeriodicalId\":552,\"journal\":{\"name\":\"Experimental Mechanics\",\"volume\":\"64 6\",\"pages\":\"895 - 911\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11340-024-01063-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01063-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Coupled Hydraulic-Mechanical Experimental System for Evaluating Dynamic Mechanical and Transport Behaviors of Deep Rocks
Background
The dynamic mechanical properties and permeability evolution of deep rocks under coupled osmotic-mechanical conditions are vital for evaluating the stability of surrounding rock in deep rock engineering and further improving deep mining efficiency. However, there is currently no valid experimental system to measure both the dynamic mechanical response and the permeability evolution of deep rocks.
Objective
In this study, a novel experimental system is developed for determining dynamic compressive properties and permeability evolution of deep rocks subjected to coupled differential pore pressure and confinement.
Methods
The experimental system is composed of a dynamic loading system, an in-situ stress system, a differential pore pressure system, and a data acquisition system. The differential pore pressure system is introduced in the dynamic loading system, and the validation of the proposed system is verified by checking the stress wave propagation in the bars and the dynamic force balance on the two loading ends of specimens. It indicates that the differential pore pressure device added to the dynamic loading system barely influences the measurement of the dynamic behaviors of rocks. A homogenous green sandstone (GS) is employed to verify the feasibility and reliability of the proposed system. Dynamic compressive strength, permeability evolution, and failure mode of GS under cyclic dynamic impact loading in combination with coupled osmotic-confining pressure are explored using the proposed system.
Results
The stress–strain curves change with the increase of impact number, and the cyclic impacts deteriorate the dynamic compressive strength of GS. The permeability of GS first increases and then decreases with the impact number. The differential pore pressure enhanced the permeability of GS under the same impact cycle. The main fracture mode of the GS specimen is mainly compressive-shear fracture in combination with a tensile fracture in the middle of the specimen due to the coupling effect of the reflected stress wave and the osmotic-confining pressure.
Conclusions
The proposed experimental system is valid and effective to measure and observe the dynamic compressive behaviors and permeability evolution of rocks under coupled osmotic-mechanical conditions.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.