{"title":"促进实用高安全性准固态电池的原位聚合反应","authors":"Xinyu Rui, Rui Hua, Dongsheng Ren, Feng Qiu, Yu Wu, Yue Qiu, Yuqiong Mao, Yi Guo, Gaolong Zhu, Xiang Liu, Yike Gao, Chang Zhao, Xuning Feng, Languang Lu, Minggao Ouyang","doi":"10.1002/adma.202402401","DOIUrl":null,"url":null,"abstract":"<p>Quasi-solid-state batteries (QSSBs) are gaining widespread attention as a promising solution to improve battery safety performance. However, the safety improvement and the underlying mechanisms of QSSBs remain elusive. Herein, a novel strategy combining high-safety ethylene carbonate-free liquid electrolyte and in situ polymerization technique is proposed to prepare practical QSSBs. The Ah-level QSSBs with LiNi<sub>0.83</sub>Co<sub>0.11</sub>Mn<sub>0.06</sub>O<sub>2</sub> cathode and graphite–silicon anode demonstrate significantly improved safety features without sacrificing electrochemical performance. As evidenced by accelerating rate calorimetry tests, the QSSBs exhibit increased self-heating temperature and onset temperature (<i>T</i><sub>2</sub>), and decreased temperature rise rate during thermal runaway (TR). The <i>T</i><sub>2</sub> has a maximum increase of 48.4 °C compared to the conventional liquid batteries. Moreover, the QSSBs do not undergo TR until 180 °C (even 200 °C) during the hot-box tests, presenting significant improvement compared to the liquid batteries that run into TR at 130 °C. Systematic investigations show that the in situ formed polymer skeleton effectively mitigates the exothermic reactions between lithium salts and lithiated anode, retards the oxygen release from cathode, and inhibits crosstalk reactions between cathode and anode at elevated temperatures. The findings offer an innovative solution for practical high-safety QSSBs and open up a new sight for building safer high-energy-density batteries.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 27","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Polymerization Facilitating Practical High-Safety Quasi-Solid-State Batteries\",\"authors\":\"Xinyu Rui, Rui Hua, Dongsheng Ren, Feng Qiu, Yu Wu, Yue Qiu, Yuqiong Mao, Yi Guo, Gaolong Zhu, Xiang Liu, Yike Gao, Chang Zhao, Xuning Feng, Languang Lu, Minggao Ouyang\",\"doi\":\"10.1002/adma.202402401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quasi-solid-state batteries (QSSBs) are gaining widespread attention as a promising solution to improve battery safety performance. However, the safety improvement and the underlying mechanisms of QSSBs remain elusive. Herein, a novel strategy combining high-safety ethylene carbonate-free liquid electrolyte and in situ polymerization technique is proposed to prepare practical QSSBs. The Ah-level QSSBs with LiNi<sub>0.83</sub>Co<sub>0.11</sub>Mn<sub>0.06</sub>O<sub>2</sub> cathode and graphite–silicon anode demonstrate significantly improved safety features without sacrificing electrochemical performance. As evidenced by accelerating rate calorimetry tests, the QSSBs exhibit increased self-heating temperature and onset temperature (<i>T</i><sub>2</sub>), and decreased temperature rise rate during thermal runaway (TR). The <i>T</i><sub>2</sub> has a maximum increase of 48.4 °C compared to the conventional liquid batteries. Moreover, the QSSBs do not undergo TR until 180 °C (even 200 °C) during the hot-box tests, presenting significant improvement compared to the liquid batteries that run into TR at 130 °C. Systematic investigations show that the in situ formed polymer skeleton effectively mitigates the exothermic reactions between lithium salts and lithiated anode, retards the oxygen release from cathode, and inhibits crosstalk reactions between cathode and anode at elevated temperatures. The findings offer an innovative solution for practical high-safety QSSBs and open up a new sight for building safer high-energy-density batteries.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"36 27\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202402401\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202402401","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In Situ Polymerization Facilitating Practical High-Safety Quasi-Solid-State Batteries
Quasi-solid-state batteries (QSSBs) are gaining widespread attention as a promising solution to improve battery safety performance. However, the safety improvement and the underlying mechanisms of QSSBs remain elusive. Herein, a novel strategy combining high-safety ethylene carbonate-free liquid electrolyte and in situ polymerization technique is proposed to prepare practical QSSBs. The Ah-level QSSBs with LiNi0.83Co0.11Mn0.06O2 cathode and graphite–silicon anode demonstrate significantly improved safety features without sacrificing electrochemical performance. As evidenced by accelerating rate calorimetry tests, the QSSBs exhibit increased self-heating temperature and onset temperature (T2), and decreased temperature rise rate during thermal runaway (TR). The T2 has a maximum increase of 48.4 °C compared to the conventional liquid batteries. Moreover, the QSSBs do not undergo TR until 180 °C (even 200 °C) during the hot-box tests, presenting significant improvement compared to the liquid batteries that run into TR at 130 °C. Systematic investigations show that the in situ formed polymer skeleton effectively mitigates the exothermic reactions between lithium salts and lithiated anode, retards the oxygen release from cathode, and inhibits crosstalk reactions between cathode and anode at elevated temperatures. The findings offer an innovative solution for practical high-safety QSSBs and open up a new sight for building safer high-energy-density batteries.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.