铝土矿残渣的还原浸出和随后的硫酸浸出钪提取--初步评估

IF 4.8 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Hydrometallurgy Pub Date : 2024-04-16 DOI:10.1016/j.hydromet.2024.106315
A. Shoppert , D. Valeev , M.M. Diallo , J. Napol'skikh , I. Loginova
{"title":"铝土矿残渣的还原浸出和随后的硫酸浸出钪提取--初步评估","authors":"A. Shoppert ,&nbsp;D. Valeev ,&nbsp;M.M. Diallo ,&nbsp;J. Napol'skikh ,&nbsp;I. Loginova","doi":"10.1016/j.hydromet.2024.106315","DOIUrl":null,"url":null,"abstract":"<div><p>Bauxite residue (BR) is a by-product of bauxite refining using Bayer process for alumina production, which contains numerous valuable components: iron (Fe), aluminum (Al), and rare earth elements such as scandium (Sc). The main issue of previous research for the Sc extraction from BR was the low extraction efficiency or high Fe co-extraction. This article shows that Fe co-extraction can be significantly reduced after reductive leaching of BR in the presence of Fe(II). This effect was achieved due to the formation of magnetite (Fe<sub>3</sub>O<sub>4</sub>) after reductive leaching of bauxite. Magnetite is practically insoluble in H<sub>2</sub>SO<sub>4</sub> at pH &gt; 2. The effect of temperature (T), time (t) and liquid to solid ratio (L:S ratio) on the leaching process was revealed. The results show that under optimum conditions (pH = 2, <em>T</em> = 90 °C, <em>t</em> = 2 h, L:S ratio = 10:1), Sc extraction can reach 57%, with a simultaneous co-extraction of Fe &lt;1.3%. At the same parameters about 10% of Fe is extracted from the raw BR. The Fe content in the residue after leaching increased from 58.3 to 66.2 wt%, corresponding to the iron concentrate. Thus, the Sc extraction from a modified BR by dilute H<sub>2</sub>SO<sub>4</sub> creates the conditions for the complete valorization of this technogenic waste, and improved extraction selectivity.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"226 ","pages":"Article 106315"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reductive leaching of bauxite residue and subsequent scandium extraction by sulphuric acid leaching – Preliminary evaluation\",\"authors\":\"A. Shoppert ,&nbsp;D. Valeev ,&nbsp;M.M. Diallo ,&nbsp;J. Napol'skikh ,&nbsp;I. Loginova\",\"doi\":\"10.1016/j.hydromet.2024.106315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bauxite residue (BR) is a by-product of bauxite refining using Bayer process for alumina production, which contains numerous valuable components: iron (Fe), aluminum (Al), and rare earth elements such as scandium (Sc). The main issue of previous research for the Sc extraction from BR was the low extraction efficiency or high Fe co-extraction. This article shows that Fe co-extraction can be significantly reduced after reductive leaching of BR in the presence of Fe(II). This effect was achieved due to the formation of magnetite (Fe<sub>3</sub>O<sub>4</sub>) after reductive leaching of bauxite. Magnetite is practically insoluble in H<sub>2</sub>SO<sub>4</sub> at pH &gt; 2. The effect of temperature (T), time (t) and liquid to solid ratio (L:S ratio) on the leaching process was revealed. The results show that under optimum conditions (pH = 2, <em>T</em> = 90 °C, <em>t</em> = 2 h, L:S ratio = 10:1), Sc extraction can reach 57%, with a simultaneous co-extraction of Fe &lt;1.3%. At the same parameters about 10% of Fe is extracted from the raw BR. The Fe content in the residue after leaching increased from 58.3 to 66.2 wt%, corresponding to the iron concentrate. Thus, the Sc extraction from a modified BR by dilute H<sub>2</sub>SO<sub>4</sub> creates the conditions for the complete valorization of this technogenic waste, and improved extraction selectivity.</p></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":\"226 \",\"pages\":\"Article 106315\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X24000550\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X24000550","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

铝土矿渣(Bauxite residue,BR)是采用拜耳法生产氧化铝的铝土矿精炼过程中产生的副产品,其中含有多种有价值的成分:铁(Fe)、铝(Al)和稀土元素,如钪(Sc)。以往从 BR 中萃取 Sc 的主要问题是萃取效率低或铁的共萃取率高。本文研究表明,在有铁(II)存在的情况下,还原浸出 BR 后,铁的共萃取率会显著降低。产生这种效果的原因是铝土矿还原浸出后形成了磁铁矿(Fe3O4)。温度(T)、时间(t)和液固比(L:S 比)对浸出过程的影响被揭示出来。结果表明,在最佳条件下(pH = 2,T = 90 °C,t = 2 小时,L:S 比 = 10:1),Sc 的萃取率可达 57%,同时共萃取了 1.3% 的 Fe。在相同的参数下,原料 BR 中的铁萃取率约为 10%。浸出后残渣中的铁含量从 58.3% 增加到 66.2%,相当于铁精矿。因此,用稀 H2SO4 从改良的 BR 中提取 Sc 为这种技术废物的完全价值化创造了条件,并提高了提取的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reductive leaching of bauxite residue and subsequent scandium extraction by sulphuric acid leaching – Preliminary evaluation

Bauxite residue (BR) is a by-product of bauxite refining using Bayer process for alumina production, which contains numerous valuable components: iron (Fe), aluminum (Al), and rare earth elements such as scandium (Sc). The main issue of previous research for the Sc extraction from BR was the low extraction efficiency or high Fe co-extraction. This article shows that Fe co-extraction can be significantly reduced after reductive leaching of BR in the presence of Fe(II). This effect was achieved due to the formation of magnetite (Fe3O4) after reductive leaching of bauxite. Magnetite is practically insoluble in H2SO4 at pH > 2. The effect of temperature (T), time (t) and liquid to solid ratio (L:S ratio) on the leaching process was revealed. The results show that under optimum conditions (pH = 2, T = 90 °C, t = 2 h, L:S ratio = 10:1), Sc extraction can reach 57%, with a simultaneous co-extraction of Fe <1.3%. At the same parameters about 10% of Fe is extracted from the raw BR. The Fe content in the residue after leaching increased from 58.3 to 66.2 wt%, corresponding to the iron concentrate. Thus, the Sc extraction from a modified BR by dilute H2SO4 creates the conditions for the complete valorization of this technogenic waste, and improved extraction selectivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrometallurgy
Hydrometallurgy 工程技术-冶金工程
CiteScore
9.50
自引率
6.40%
发文量
144
审稿时长
3.4 months
期刊介绍: Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties. Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.
期刊最新文献
Preparation of high-purity iron oxide from end-of-life NdFeB magnet waste Efficient separation and recovery of cobalt from grinding waste of cemented carbide using a sulfuric acid-sodium persulfate mixed solution Separation of cerium from solution by oxidative precipitation with hydrogen peroxide: The reaction mechanism Phase evolution and elemental distribution of zinc and germanium during the sulfide roasting, zinc fuming and leaching processes: Benefit of pretreating zinc oxide dust Technological advancements in rare earth elements recovery from ionic clays: A comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1