Hyungsoo Yoon, Sujin Jeong, Byeongmoon Lee, Yongtaek Hong
{"title":"适形基底上微型器件的位点选择性集成策略","authors":"Hyungsoo Yoon, Sujin Jeong, Byeongmoon Lee, Yongtaek Hong","doi":"10.1038/s41928-024-01159-3","DOIUrl":null,"url":null,"abstract":"Microdevices can be integrated on conformable substrates to create high-performance and multifunctional human–machine interfaces. However, existing integration schemes often use unpatterned, thick and rigid adhesive layers that can increase the flexural rigidity and compromise mechanical compliance. Here we report the site-selective and anisotropically conductive integration of microdevices on conformable substrates. An adhesive precursor is selectively deposited on high-density arrays of microdevices using a velocity-controlled dip-transfer coating method. This technique suppresses capillary action and unwanted coating between devices, thereby minimizing the extent of bonding areas that degrade the inherent compliance of polymeric substrates. Ferromagnetic particles in the adhesives are magnetically self-assembled into well-defined anisotropic chains, resulting in a low contact resistance without electrical interference between fine-pitch terminals. We use the approach to additively integrate multiscale, die-level microdevices on various flexible and stretchable substrates. We show that it can be used to assemble microscale light-emitting diodes and a microcontroller die on a flexible circuit to create a skin-attachable device capable of detecting and displaying temperature. High-density device arrays can be integrated on flexible substrates using a dip-transfer coating method that suppresses adhesive layers from forming between closely spaced devices and uses magnetically self-assembled particles to increase the anisotropic conductivity.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A site-selective integration strategy for microdevices on conformable substrates\",\"authors\":\"Hyungsoo Yoon, Sujin Jeong, Byeongmoon Lee, Yongtaek Hong\",\"doi\":\"10.1038/s41928-024-01159-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microdevices can be integrated on conformable substrates to create high-performance and multifunctional human–machine interfaces. However, existing integration schemes often use unpatterned, thick and rigid adhesive layers that can increase the flexural rigidity and compromise mechanical compliance. Here we report the site-selective and anisotropically conductive integration of microdevices on conformable substrates. An adhesive precursor is selectively deposited on high-density arrays of microdevices using a velocity-controlled dip-transfer coating method. This technique suppresses capillary action and unwanted coating between devices, thereby minimizing the extent of bonding areas that degrade the inherent compliance of polymeric substrates. Ferromagnetic particles in the adhesives are magnetically self-assembled into well-defined anisotropic chains, resulting in a low contact resistance without electrical interference between fine-pitch terminals. We use the approach to additively integrate multiscale, die-level microdevices on various flexible and stretchable substrates. We show that it can be used to assemble microscale light-emitting diodes and a microcontroller die on a flexible circuit to create a skin-attachable device capable of detecting and displaying temperature. High-density device arrays can be integrated on flexible substrates using a dip-transfer coating method that suppresses adhesive layers from forming between closely spaced devices and uses magnetically self-assembled particles to increase the anisotropic conductivity.\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":33.7000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41928-024-01159-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01159-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A site-selective integration strategy for microdevices on conformable substrates
Microdevices can be integrated on conformable substrates to create high-performance and multifunctional human–machine interfaces. However, existing integration schemes often use unpatterned, thick and rigid adhesive layers that can increase the flexural rigidity and compromise mechanical compliance. Here we report the site-selective and anisotropically conductive integration of microdevices on conformable substrates. An adhesive precursor is selectively deposited on high-density arrays of microdevices using a velocity-controlled dip-transfer coating method. This technique suppresses capillary action and unwanted coating between devices, thereby minimizing the extent of bonding areas that degrade the inherent compliance of polymeric substrates. Ferromagnetic particles in the adhesives are magnetically self-assembled into well-defined anisotropic chains, resulting in a low contact resistance without electrical interference between fine-pitch terminals. We use the approach to additively integrate multiscale, die-level microdevices on various flexible and stretchable substrates. We show that it can be used to assemble microscale light-emitting diodes and a microcontroller die on a flexible circuit to create a skin-attachable device capable of detecting and displaying temperature. High-density device arrays can be integrated on flexible substrates using a dip-transfer coating method that suppresses adhesive layers from forming between closely spaced devices and uses magnetically self-assembled particles to increase the anisotropic conductivity.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.