人工选择具有攻击性的生物控制剂能否改善作物保护?

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY Journal of Pest Science Pub Date : 2024-04-23 DOI:10.1007/s10340-024-01780-3
Pierre Royer, François Dumont, Caroline Provost, Eric Lucas
{"title":"人工选择具有攻击性的生物控制剂能否改善作物保护?","authors":"Pierre Royer, François Dumont, Caroline Provost, Eric Lucas","doi":"10.1007/s10340-024-01780-3","DOIUrl":null,"url":null,"abstract":"<p>In agroecosystems, the efficiency of biocontrol agents could be improved through the artificial selection of specific traits that would enhance their zoophagy level. The aim of this study was to evaluate the impact of artificially selected populations of the omnivorous predatory bug, <i>Nabis americoferus</i>, on the tarnished plant bug, <i>Lygus lineolaris</i>, in organic strawberry crops. Six populations of <i>N. americoferus</i> were selected according to their aggressiveness, three were composed of highly aggressive individuals, whereas the other lines contained docile individuals. The first hypothesis was that, since aggressive predators display a higher attack rate, aggressive lines would exhibit a higher pest control and a better crop protection than docile lines. The second hypothesis was that, when two biocontrol agents species are used conjointly, the presence of at least one docile population would generate a higher synergy between both species. <i>N. americoferus</i> populations were released in an experimental strawberry field, with or without a second intraguild predator, the Anthocorid, <i>Orius insidiosus</i>. Results support the first hypothesis that the aggressive lines generate a better pest control and a better strawberries crop protection than docile lines but only at low pest density. The second hypothesis is neither supported nor rejected since the combination of docile lines and <i>O. insidiosus</i> led to a better pest control at high pest density, but led to a reduced crop protection at low pest density. Our study shows that the artificial selection of aggressiveness has the potential to improve the effectiveness of biocontrol programs.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"23 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"May biocontrol agents artificially selected for their aggressiveness improve crop protection?\",\"authors\":\"Pierre Royer, François Dumont, Caroline Provost, Eric Lucas\",\"doi\":\"10.1007/s10340-024-01780-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In agroecosystems, the efficiency of biocontrol agents could be improved through the artificial selection of specific traits that would enhance their zoophagy level. The aim of this study was to evaluate the impact of artificially selected populations of the omnivorous predatory bug, <i>Nabis americoferus</i>, on the tarnished plant bug, <i>Lygus lineolaris</i>, in organic strawberry crops. Six populations of <i>N. americoferus</i> were selected according to their aggressiveness, three were composed of highly aggressive individuals, whereas the other lines contained docile individuals. The first hypothesis was that, since aggressive predators display a higher attack rate, aggressive lines would exhibit a higher pest control and a better crop protection than docile lines. The second hypothesis was that, when two biocontrol agents species are used conjointly, the presence of at least one docile population would generate a higher synergy between both species. <i>N. americoferus</i> populations were released in an experimental strawberry field, with or without a second intraguild predator, the Anthocorid, <i>Orius insidiosus</i>. Results support the first hypothesis that the aggressive lines generate a better pest control and a better strawberries crop protection than docile lines but only at low pest density. The second hypothesis is neither supported nor rejected since the combination of docile lines and <i>O. insidiosus</i> led to a better pest control at high pest density, but led to a reduced crop protection at low pest density. Our study shows that the artificial selection of aggressiveness has the potential to improve the effectiveness of biocontrol programs.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01780-3\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01780-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在农业生态系统中,可以通过人工选择特定性状来提高生物控制剂的效率,从而提高其食性水平。本研究旨在评估人工选择的杂食性捕食蝽 Nabis americoferus 种群对有机草莓作物中玷污植物蝽 Lygus lineolaris 的影响。根据其攻击性选择了六个 N. americoferus 种群,其中三个种群由攻击性很强的个体组成,而其他品系则包含温顺的个体。第一个假设是,由于攻击性强的捕食者攻击率较高,因此攻击性强的品系会比温顺的品系表现出更强的害虫控制能力和更好的作物保护能力。第二个假设是,在同时使用两种生物控制剂时,如果至少有一个温顺的种群存在,两种生物控制剂之间的协同作用会更大。我们在草莓试验田中释放了 N. americoferus 种群,同时还释放了或不释放第二种谷内捕食者--Anthocorid,Orius insidiosus。结果支持第一个假设,即攻击性品系比温顺品系能更好地控制害虫,更好地保护草莓作物,但仅限于害虫密度较低的情况。第二个假设既没有被支持,也没有被否定,因为温顺品系与 O. insidiosus 的组合在害虫密度高时能更好地控制害虫,但在害虫密度低时却降低了对作物的保护。我们的研究表明,人工选择攻击性有可能提高生物防治计划的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
May biocontrol agents artificially selected for their aggressiveness improve crop protection?

In agroecosystems, the efficiency of biocontrol agents could be improved through the artificial selection of specific traits that would enhance their zoophagy level. The aim of this study was to evaluate the impact of artificially selected populations of the omnivorous predatory bug, Nabis americoferus, on the tarnished plant bug, Lygus lineolaris, in organic strawberry crops. Six populations of N. americoferus were selected according to their aggressiveness, three were composed of highly aggressive individuals, whereas the other lines contained docile individuals. The first hypothesis was that, since aggressive predators display a higher attack rate, aggressive lines would exhibit a higher pest control and a better crop protection than docile lines. The second hypothesis was that, when two biocontrol agents species are used conjointly, the presence of at least one docile population would generate a higher synergy between both species. N. americoferus populations were released in an experimental strawberry field, with or without a second intraguild predator, the Anthocorid, Orius insidiosus. Results support the first hypothesis that the aggressive lines generate a better pest control and a better strawberries crop protection than docile lines but only at low pest density. The second hypothesis is neither supported nor rejected since the combination of docile lines and O. insidiosus led to a better pest control at high pest density, but led to a reduced crop protection at low pest density. Our study shows that the artificial selection of aggressiveness has the potential to improve the effectiveness of biocontrol programs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
期刊最新文献
Assessment of drive efficiency and resistance allele formation of a homing gene drive in the mosquito Aedes aegypti Exclusion of ants conditions the efficiency of an attract and reward strategy against Dysaphis plantaginea in apple orchards From a stored-product pest to a promising protein source: a U-turn of human perspective for the yellow mealworm Tenebrio molitor Biological control of pests of stored cereals with the predatory mites Blattisocius tarsalis and Cheyletus malaccensis Cover crop providing windborne pollen enhances the efficacy of biocontrol of multiple pests by Euseius sojaensis in citrus orchards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1