{"title":"数据中心低太赫兹链路的 300 GHz 信道测量","authors":"Johannes M. Eckhardt;Tobias Doeker;Thomas Kürner","doi":"10.1109/OJAP.2024.3391798","DOIUrl":null,"url":null,"abstract":"This article presents comprehensive double-directional channel measurements with time-domain channel sounding at 300 GHz that characterize the channel of wireless links in a data center. The channels are classified into three scenario-dependent use cases and are individually analyzed providing channel parameters as a function of the required signal-to-noise ratio of the prospective communication system. The spatial and temporal analysis of the channel reveals relevant propagation effects such as the influence of scattering and derives relations between the channel parameters of the propagation and the radio channel. The analysis shows that multipath propagation becomes relevant for systems with high signal-to-noise ratio requirements despite high-gain directional antennas. A first order approximation of relevant propagation effects complements the analysis. The measurement data of the whole measurement campaign with 18250 calibrated impulse responses including all meta data is published so that the research community has a collective benefit.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10506244","citationCount":"0","resultStr":"{\"title\":\"Channel Measurements at 300 GHz for Low Terahertz Links in a Data Center\",\"authors\":\"Johannes M. Eckhardt;Tobias Doeker;Thomas Kürner\",\"doi\":\"10.1109/OJAP.2024.3391798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents comprehensive double-directional channel measurements with time-domain channel sounding at 300 GHz that characterize the channel of wireless links in a data center. The channels are classified into three scenario-dependent use cases and are individually analyzed providing channel parameters as a function of the required signal-to-noise ratio of the prospective communication system. The spatial and temporal analysis of the channel reveals relevant propagation effects such as the influence of scattering and derives relations between the channel parameters of the propagation and the radio channel. The analysis shows that multipath propagation becomes relevant for systems with high signal-to-noise ratio requirements despite high-gain directional antennas. A first order approximation of relevant propagation effects complements the analysis. The measurement data of the whole measurement campaign with 18250 calibrated impulse responses including all meta data is published so that the research community has a collective benefit.\",\"PeriodicalId\":34267,\"journal\":{\"name\":\"IEEE Open Journal of Antennas and Propagation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10506244\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10506244/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10506244/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Channel Measurements at 300 GHz for Low Terahertz Links in a Data Center
This article presents comprehensive double-directional channel measurements with time-domain channel sounding at 300 GHz that characterize the channel of wireless links in a data center. The channels are classified into three scenario-dependent use cases and are individually analyzed providing channel parameters as a function of the required signal-to-noise ratio of the prospective communication system. The spatial and temporal analysis of the channel reveals relevant propagation effects such as the influence of scattering and derives relations between the channel parameters of the propagation and the radio channel. The analysis shows that multipath propagation becomes relevant for systems with high signal-to-noise ratio requirements despite high-gain directional antennas. A first order approximation of relevant propagation effects complements the analysis. The measurement data of the whole measurement campaign with 18250 calibrated impulse responses including all meta data is published so that the research community has a collective benefit.