利用大环传感器阵列诊断人体血清中 SARS-Cov-2 感染的方法学研究

IF 3.5 Q2 CHEMISTRY, ANALYTICAL Sensors & diagnostics Pub Date : 2024-04-22 DOI:10.1039/D4SD00009A
Monica Swetha Bosco, Zeki Topçu, Soumen Pradhan, Ariadne Sossah, Vassilis Tsatsaris, Christelle Vauloup-Fellous, Sarit S. Agasti, Yves Rozenholc and Nathalie Gagey-Eilstein
{"title":"利用大环传感器阵列诊断人体血清中 SARS-Cov-2 感染的方法学研究","authors":"Monica Swetha Bosco, Zeki Topçu, Soumen Pradhan, Ariadne Sossah, Vassilis Tsatsaris, Christelle Vauloup-Fellous, Sarit S. Agasti, Yves Rozenholc and Nathalie Gagey-Eilstein","doi":"10.1039/D4SD00009A","DOIUrl":null,"url":null,"abstract":"<p >This article reports the methodology and the proof of concept of a blood-based diagnostic strategy for the SARS-CoV-2 infection. The proposed method relies on the non-specific/selective array-based sensing strategy mimicking the human olfactory system using a cucurbit[7]uril macrocycle receptor conjugated with a library of environmentally sensitive fluorophores. The study cohort includes 26 samples, <em>i.e.</em> 12 cases and 14 controls. Statistical analysis methods such as linear discriminant and random forest were able to successfully classify and discriminate the two groups with almost 90% accuracy. This diagnostic result highlights the methodology and confirms the potential of this non-specific/selective sensing approach for non-invasive clinical diagnosis.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 5","pages":" 863-871"},"PeriodicalIF":3.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00009a?page=search","citationCount":"0","resultStr":"{\"title\":\"A methodological study for the diagnosis of the SARS-Cov-2 infection in human serum with a macrocyclic sensor array†\",\"authors\":\"Monica Swetha Bosco, Zeki Topçu, Soumen Pradhan, Ariadne Sossah, Vassilis Tsatsaris, Christelle Vauloup-Fellous, Sarit S. Agasti, Yves Rozenholc and Nathalie Gagey-Eilstein\",\"doi\":\"10.1039/D4SD00009A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This article reports the methodology and the proof of concept of a blood-based diagnostic strategy for the SARS-CoV-2 infection. The proposed method relies on the non-specific/selective array-based sensing strategy mimicking the human olfactory system using a cucurbit[7]uril macrocycle receptor conjugated with a library of environmentally sensitive fluorophores. The study cohort includes 26 samples, <em>i.e.</em> 12 cases and 14 controls. Statistical analysis methods such as linear discriminant and random forest were able to successfully classify and discriminate the two groups with almost 90% accuracy. This diagnostic result highlights the methodology and confirms the potential of this non-specific/selective sensing approach for non-invasive clinical diagnosis.</p>\",\"PeriodicalId\":74786,\"journal\":{\"name\":\"Sensors & diagnostics\",\"volume\":\" 5\",\"pages\":\" 863-871\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00009a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors & diagnostics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/sd/d4sd00009a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sd/d4sd00009a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文报告了一种基于血液的 SARS-CoV-2 感染诊断策略的方法和概念验证。该方法采用非特异性/选择性阵列传感策略,模仿人类嗅觉系统,使用葫芦[7]脲大环受体与环境敏感荧光团库共轭。研究队列包括 26 个样本,即 12 个病例和 14 个对照。线性判别和随机森林等统计分析方法能够成功地对两组样本进行分类和判别,准确率接近 90%。这一诊断结果凸显了该方法学,并证实了这种非特异性/选择性传感方法在无创临床诊断方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A methodological study for the diagnosis of the SARS-Cov-2 infection in human serum with a macrocyclic sensor array†

This article reports the methodology and the proof of concept of a blood-based diagnostic strategy for the SARS-CoV-2 infection. The proposed method relies on the non-specific/selective array-based sensing strategy mimicking the human olfactory system using a cucurbit[7]uril macrocycle receptor conjugated with a library of environmentally sensitive fluorophores. The study cohort includes 26 samples, i.e. 12 cases and 14 controls. Statistical analysis methods such as linear discriminant and random forest were able to successfully classify and discriminate the two groups with almost 90% accuracy. This diagnostic result highlights the methodology and confirms the potential of this non-specific/selective sensing approach for non-invasive clinical diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
Back cover Pursuing theranostics: a multimodal architecture approach. A review on Ti3C2Tx based nanocomposites for the electrochemical sensing of clinically relevant biomarkers Back cover Introduction to Supramolecular Sensors: From Molecules to Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1