{"title":"灌木叶面积和叶脉性状对植被过渡带光环境的权衡反应","authors":"Dingyue Liu, Chengzhang Zhao, Geyang Li, Zhini Chen, Suhong Wang, Chenglu Huang, Peixian Zhang","doi":"10.1071/fp24011","DOIUrl":null,"url":null,"abstract":"<p>The leaf is an important site for energy acquisition and material transformation in plants. Leaf functional traits and their trade-off mechanisms reflect the resource utilisation efficiency and habitat adaptation strategies of plants, and contribute to our understanding of the mechanism by which the distribution pattern of plant populations in arid and semi-arid areas influences the evolution of vegetation structure and function. We selected two natural environments, the tree–shrub community canopy area and the shrub–grass community open area in the transition zone between the Qinghai–Tibet Plateau and the Loess Plateau. We studied the trade-off relationships of leaf area with leaf midvein diameter and leaf vein density in <i>Cotoneaster multiflorus</i> using the standardised major axis (SMA) method. The results show that the growth pattern of <i>C. multiflorus</i>, which has small leaves of high density and extremely small vein diameters, in the open area. The water use efficiency and net photosynthetic rate of plants in the open area were significantly greater than those of plants growing in the canopy area. The adaptability of <i>C. multiflorus</i> to environments with high light and low soil water content reflects its spatial colonisation potential in arid and semiarid mountains.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shrub leaf area and leaf vein trait trade-offs in response to the light environment in a vegetation transitional zone\",\"authors\":\"Dingyue Liu, Chengzhang Zhao, Geyang Li, Zhini Chen, Suhong Wang, Chenglu Huang, Peixian Zhang\",\"doi\":\"10.1071/fp24011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The leaf is an important site for energy acquisition and material transformation in plants. Leaf functional traits and their trade-off mechanisms reflect the resource utilisation efficiency and habitat adaptation strategies of plants, and contribute to our understanding of the mechanism by which the distribution pattern of plant populations in arid and semi-arid areas influences the evolution of vegetation structure and function. We selected two natural environments, the tree–shrub community canopy area and the shrub–grass community open area in the transition zone between the Qinghai–Tibet Plateau and the Loess Plateau. We studied the trade-off relationships of leaf area with leaf midvein diameter and leaf vein density in <i>Cotoneaster multiflorus</i> using the standardised major axis (SMA) method. The results show that the growth pattern of <i>C. multiflorus</i>, which has small leaves of high density and extremely small vein diameters, in the open area. The water use efficiency and net photosynthetic rate of plants in the open area were significantly greater than those of plants growing in the canopy area. The adaptability of <i>C. multiflorus</i> to environments with high light and low soil water content reflects its spatial colonisation potential in arid and semiarid mountains.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/fp24011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/fp24011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Shrub leaf area and leaf vein trait trade-offs in response to the light environment in a vegetation transitional zone
The leaf is an important site for energy acquisition and material transformation in plants. Leaf functional traits and their trade-off mechanisms reflect the resource utilisation efficiency and habitat adaptation strategies of plants, and contribute to our understanding of the mechanism by which the distribution pattern of plant populations in arid and semi-arid areas influences the evolution of vegetation structure and function. We selected two natural environments, the tree–shrub community canopy area and the shrub–grass community open area in the transition zone between the Qinghai–Tibet Plateau and the Loess Plateau. We studied the trade-off relationships of leaf area with leaf midvein diameter and leaf vein density in Cotoneaster multiflorus using the standardised major axis (SMA) method. The results show that the growth pattern of C. multiflorus, which has small leaves of high density and extremely small vein diameters, in the open area. The water use efficiency and net photosynthetic rate of plants in the open area were significantly greater than those of plants growing in the canopy area. The adaptability of C. multiflorus to environments with high light and low soil water content reflects its spatial colonisation potential in arid and semiarid mountains.