Jian-gang Wang, Yan Zheng, Hua-lin Wang, Zhi-shan Bai, Yang Qiu
{"title":"水力旋流器中不对称流动结构的研究","authors":"Jian-gang Wang, Yan Zheng, Hua-lin Wang, Zhi-shan Bai, Yang Qiu","doi":"10.1002/apj.3080","DOIUrl":null,"url":null,"abstract":"<p>The flow field of a hydrocyclone was investigated using both computational fluid dynamics (CFD) and particle image velocimetry (PIV). A refractive index matching method was employed to improve the precision of the PIV measurements. The CFD results are in good agreement with PIV measurements. Detailed analysis reveals significant axial asymmetry in the velocity components, with the radial velocity component exhibiting notable disparities. This observation is supported by quantitative data comparing different sections of the hydrocyclone. It is further found that the asymmetry might be mainly attributed to the secondary vortexes with the single inlet of the hydrocyclone. And the secondary vortexes, superimposed on the primary flow rather than existing on its own, spiral downwards from near the inlet towards the underflow orifice. It is hypothesized that specific boundary effects and pressure gradients play a pivotal role in the formation of secondary flows. This assumption is grounded on both theoretical considerations and empirical observations, suggesting that these factors significantly influence the flow dynamics within the hydrocyclone. The insights gained from our measurement methodology and enhanced understanding of secondary flows within hydrocyclones are not only poised to serve as valuable references for fellow researchers but also have the potential to inform the design and operational optimization of hydrocyclones for improved efficiency and performance.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the asymmetric flow structure in a hydrocyclone\",\"authors\":\"Jian-gang Wang, Yan Zheng, Hua-lin Wang, Zhi-shan Bai, Yang Qiu\",\"doi\":\"10.1002/apj.3080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The flow field of a hydrocyclone was investigated using both computational fluid dynamics (CFD) and particle image velocimetry (PIV). A refractive index matching method was employed to improve the precision of the PIV measurements. The CFD results are in good agreement with PIV measurements. Detailed analysis reveals significant axial asymmetry in the velocity components, with the radial velocity component exhibiting notable disparities. This observation is supported by quantitative data comparing different sections of the hydrocyclone. It is further found that the asymmetry might be mainly attributed to the secondary vortexes with the single inlet of the hydrocyclone. And the secondary vortexes, superimposed on the primary flow rather than existing on its own, spiral downwards from near the inlet towards the underflow orifice. It is hypothesized that specific boundary effects and pressure gradients play a pivotal role in the formation of secondary flows. This assumption is grounded on both theoretical considerations and empirical observations, suggesting that these factors significantly influence the flow dynamics within the hydrocyclone. The insights gained from our measurement methodology and enhanced understanding of secondary flows within hydrocyclones are not only poised to serve as valuable references for fellow researchers but also have the potential to inform the design and operational optimization of hydrocyclones for improved efficiency and performance.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apj.3080\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3080","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of the asymmetric flow structure in a hydrocyclone
The flow field of a hydrocyclone was investigated using both computational fluid dynamics (CFD) and particle image velocimetry (PIV). A refractive index matching method was employed to improve the precision of the PIV measurements. The CFD results are in good agreement with PIV measurements. Detailed analysis reveals significant axial asymmetry in the velocity components, with the radial velocity component exhibiting notable disparities. This observation is supported by quantitative data comparing different sections of the hydrocyclone. It is further found that the asymmetry might be mainly attributed to the secondary vortexes with the single inlet of the hydrocyclone. And the secondary vortexes, superimposed on the primary flow rather than existing on its own, spiral downwards from near the inlet towards the underflow orifice. It is hypothesized that specific boundary effects and pressure gradients play a pivotal role in the formation of secondary flows. This assumption is grounded on both theoretical considerations and empirical observations, suggesting that these factors significantly influence the flow dynamics within the hydrocyclone. The insights gained from our measurement methodology and enhanced understanding of secondary flows within hydrocyclones are not only poised to serve as valuable references for fellow researchers but also have the potential to inform the design and operational optimization of hydrocyclones for improved efficiency and performance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.