{"title":"利用非等温 PF-PSLBM 模型研究热固性对流-扩散作用下的固态-空气枝晶生长与运动","authors":"Chaolong Li, Jian Wen, Ke Li, Simin Wang","doi":"10.1002/apj.3085","DOIUrl":null,"url":null,"abstract":"<p>This study unveils a numerical paradigm that amalgamates the partially saturated lattice Boltzmann method (PSLBM) with the non-isothermal quantitative phase-field (PF) model. This innovative integration equips us with a prognostic tool ready to elucidate the progression and motion of solid-air dendritic growth in the presence of both natural and forced convection. The PSLBM is employed to compute the flow of the solution and the interaction forces between the fluid and solid dendrites. Concurrently, the PF model is utilized to simulate the formation of solid-air dendrites. The reliability of calculating of interaction forces between the fluid and solid was confirmed through a numerical case study involving fluid flow around a stationary cylinder. The results indicate that this model is applicable for simulating the growth and evolution of single/multiple solid-air dendrites under the influence of convection, whether they are stationary or in motion. The promotion of the upstream side dendritic arms and the inhibition of the downstream dendritic arms increase with the intensification of natural convection. As the initial undercooling is raised, the capacity of natural convection to reshape dendritic morphology gradually diminishes. With the enhancement of forced convection intensity, due to alterations in the flow pattern, the downstream dendritic arms do not consistently exhibit growth suppression. The motion of solid-air dendrites induced by forced convection counteracts the influence of convection, resulting in slightly faster growth of the downstream dendritic arms compared to the upstream arms. Simultaneously, it fosters the formation of secondary dendritic branches in the upstream zone.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on solid-air dendrite growth and motion with thermosolutal convection-diffusion using non-isothermal PF-PSLBM model\",\"authors\":\"Chaolong Li, Jian Wen, Ke Li, Simin Wang\",\"doi\":\"10.1002/apj.3085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study unveils a numerical paradigm that amalgamates the partially saturated lattice Boltzmann method (PSLBM) with the non-isothermal quantitative phase-field (PF) model. This innovative integration equips us with a prognostic tool ready to elucidate the progression and motion of solid-air dendritic growth in the presence of both natural and forced convection. The PSLBM is employed to compute the flow of the solution and the interaction forces between the fluid and solid dendrites. Concurrently, the PF model is utilized to simulate the formation of solid-air dendrites. The reliability of calculating of interaction forces between the fluid and solid was confirmed through a numerical case study involving fluid flow around a stationary cylinder. The results indicate that this model is applicable for simulating the growth and evolution of single/multiple solid-air dendrites under the influence of convection, whether they are stationary or in motion. The promotion of the upstream side dendritic arms and the inhibition of the downstream dendritic arms increase with the intensification of natural convection. As the initial undercooling is raised, the capacity of natural convection to reshape dendritic morphology gradually diminishes. With the enhancement of forced convection intensity, due to alterations in the flow pattern, the downstream dendritic arms do not consistently exhibit growth suppression. The motion of solid-air dendrites induced by forced convection counteracts the influence of convection, resulting in slightly faster growth of the downstream dendritic arms compared to the upstream arms. Simultaneously, it fosters the formation of secondary dendritic branches in the upstream zone.</p>\",\"PeriodicalId\":49237,\"journal\":{\"name\":\"Asia-Pacific Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apj.3085\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3085","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Study on solid-air dendrite growth and motion with thermosolutal convection-diffusion using non-isothermal PF-PSLBM model
This study unveils a numerical paradigm that amalgamates the partially saturated lattice Boltzmann method (PSLBM) with the non-isothermal quantitative phase-field (PF) model. This innovative integration equips us with a prognostic tool ready to elucidate the progression and motion of solid-air dendritic growth in the presence of both natural and forced convection. The PSLBM is employed to compute the flow of the solution and the interaction forces between the fluid and solid dendrites. Concurrently, the PF model is utilized to simulate the formation of solid-air dendrites. The reliability of calculating of interaction forces between the fluid and solid was confirmed through a numerical case study involving fluid flow around a stationary cylinder. The results indicate that this model is applicable for simulating the growth and evolution of single/multiple solid-air dendrites under the influence of convection, whether they are stationary or in motion. The promotion of the upstream side dendritic arms and the inhibition of the downstream dendritic arms increase with the intensification of natural convection. As the initial undercooling is raised, the capacity of natural convection to reshape dendritic morphology gradually diminishes. With the enhancement of forced convection intensity, due to alterations in the flow pattern, the downstream dendritic arms do not consistently exhibit growth suppression. The motion of solid-air dendrites induced by forced convection counteracts the influence of convection, resulting in slightly faster growth of the downstream dendritic arms compared to the upstream arms. Simultaneously, it fosters the formation of secondary dendritic branches in the upstream zone.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).