{"title":"在重叠频率上组合 GPS/Galileo/BDS-3 信号,绘制可互操作的多径半球地图","authors":"Jianghui Geng, Pengbo Li, Guangcai Li","doi":"10.1007/s00190-024-01841-6","DOIUrl":null,"url":null,"abstract":"<p>Multipath remains one of the major challenges in high-precision GNSS positioning. The multipath hemispherical map (MHM) based on satellites’ location repeatability in space is a popular method to mitigate GNSS multipath effects, but its performance depends on the availability of sufficient satellite orbital tracks in the skyplot. For instance, for BDS-3 medium Earth orbiters and Galileo satellites with 7-day and 10-day orbital repeat times, respectively, the skyplot of their orbital tracks will be too sparse to cover the shifting orbital tracks on the succeeding days, if only a few days of observations are used to construct MHMs. In this study, we establish an interoperable MHM using the overlap frequency signals of GPS, Galileo and BDS-3 (i.e<i>.</i>, GPS L1/L5, Galileo E1/E5a and BDS-3 B1C/B2a). We compared the performance of GPS/Galileo/BDS-3 MHM (i.e<i>.</i>, MP_GEC) and single-constellation MHMs (i.e<i>.</i>, MP_G, MP_E and MP_C). The mean reduction rates of the L1/E1/B1C and L5/E5a/B2a carrier-phase residuals for the MP_GEC applied to GPS, Galileo and BDS-3 are 36% and 48%, respectively, which are 10–30% points larger compared to the MP_G, MP_E and MP_C. The MP_GEC constructed using 4 days of observations reduced the Galileo RMS positioning errors by 26%, 31% and 29% for the east, north, and up components, respectively, showing improvements of about 16, 18 and 17% points compared to the MP_E, and even approaching the RMS errors of the MP_E constructed using 10 days of observations. The results show that the interoperable GPS/Galileo/BDS-3 MHM is able to improve the spatial resolution, modeling efficiency and correction performance in mitigating multipath effects for high-precision GNSS positioning.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining the GPS/Galileo/BDS-3 signals on overlap frequencies for interoperable multipath hemispherical maps\",\"authors\":\"Jianghui Geng, Pengbo Li, Guangcai Li\",\"doi\":\"10.1007/s00190-024-01841-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multipath remains one of the major challenges in high-precision GNSS positioning. The multipath hemispherical map (MHM) based on satellites’ location repeatability in space is a popular method to mitigate GNSS multipath effects, but its performance depends on the availability of sufficient satellite orbital tracks in the skyplot. For instance, for BDS-3 medium Earth orbiters and Galileo satellites with 7-day and 10-day orbital repeat times, respectively, the skyplot of their orbital tracks will be too sparse to cover the shifting orbital tracks on the succeeding days, if only a few days of observations are used to construct MHMs. In this study, we establish an interoperable MHM using the overlap frequency signals of GPS, Galileo and BDS-3 (i.e<i>.</i>, GPS L1/L5, Galileo E1/E5a and BDS-3 B1C/B2a). We compared the performance of GPS/Galileo/BDS-3 MHM (i.e<i>.</i>, MP_GEC) and single-constellation MHMs (i.e<i>.</i>, MP_G, MP_E and MP_C). The mean reduction rates of the L1/E1/B1C and L5/E5a/B2a carrier-phase residuals for the MP_GEC applied to GPS, Galileo and BDS-3 are 36% and 48%, respectively, which are 10–30% points larger compared to the MP_G, MP_E and MP_C. The MP_GEC constructed using 4 days of observations reduced the Galileo RMS positioning errors by 26%, 31% and 29% for the east, north, and up components, respectively, showing improvements of about 16, 18 and 17% points compared to the MP_E, and even approaching the RMS errors of the MP_E constructed using 10 days of observations. The results show that the interoperable GPS/Galileo/BDS-3 MHM is able to improve the spatial resolution, modeling efficiency and correction performance in mitigating multipath effects for high-precision GNSS positioning.</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-024-01841-6\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01841-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Combining the GPS/Galileo/BDS-3 signals on overlap frequencies for interoperable multipath hemispherical maps
Multipath remains one of the major challenges in high-precision GNSS positioning. The multipath hemispherical map (MHM) based on satellites’ location repeatability in space is a popular method to mitigate GNSS multipath effects, but its performance depends on the availability of sufficient satellite orbital tracks in the skyplot. For instance, for BDS-3 medium Earth orbiters and Galileo satellites with 7-day and 10-day orbital repeat times, respectively, the skyplot of their orbital tracks will be too sparse to cover the shifting orbital tracks on the succeeding days, if only a few days of observations are used to construct MHMs. In this study, we establish an interoperable MHM using the overlap frequency signals of GPS, Galileo and BDS-3 (i.e., GPS L1/L5, Galileo E1/E5a and BDS-3 B1C/B2a). We compared the performance of GPS/Galileo/BDS-3 MHM (i.e., MP_GEC) and single-constellation MHMs (i.e., MP_G, MP_E and MP_C). The mean reduction rates of the L1/E1/B1C and L5/E5a/B2a carrier-phase residuals for the MP_GEC applied to GPS, Galileo and BDS-3 are 36% and 48%, respectively, which are 10–30% points larger compared to the MP_G, MP_E and MP_C. The MP_GEC constructed using 4 days of observations reduced the Galileo RMS positioning errors by 26%, 31% and 29% for the east, north, and up components, respectively, showing improvements of about 16, 18 and 17% points compared to the MP_E, and even approaching the RMS errors of the MP_E constructed using 10 days of observations. The results show that the interoperable GPS/Galileo/BDS-3 MHM is able to improve the spatial resolution, modeling efficiency and correction performance in mitigating multipath effects for high-precision GNSS positioning.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics