设计和优化八倍电极阵列,通过与机器视觉技术相结合的电浮选技术实现微观粒子链转动

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analyst Pub Date : 2024-04-23 DOI:10.1039/D4AN00441H
Zhijie Huan, Zexiang Chen, Xiongbiao Zheng, Yiwei Zhang, Jingjie Zhang and Weicheng Ma
{"title":"设计和优化八倍电极阵列,通过与机器视觉技术相结合的电浮选技术实现微观粒子链转动","authors":"Zhijie Huan, Zexiang Chen, Xiongbiao Zheng, Yiwei Zhang, Jingjie Zhang and Weicheng Ma","doi":"10.1039/D4AN00441H","DOIUrl":null,"url":null,"abstract":"<p >Microparticle rotation is an important process in biomedical engineering, such as biosensors, cell injection or cell morphology. Single particle rotation has been widely investigated, while rotation of particle chains has gained rare attention. In this paper, we utilize a noncontact manipulation method to rotate microparticle chains <em>via</em> electrorotation by designing an octuple-electrode array (OEA). Finite element simulations were conducted for analyzing the desired electrode field and optimizing the structure of microelectrode pairs. The direction of the electric field in the workspace is investigated with different voltage signal inputs through specially designed circuits. In the experiment, microparticles are driven to form several chains in the proposed electrode fields. With the rotation of the electric field, particle chains could be rotated synchronously. Automated rotation and detection of polystyrene microspheres and yeast cell chains are achieved using machine vision technology. Results show that the proposed method could be utilized to rotate ordered microparticles with an appropriate input signal.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and optimization of an octuple-electrode array for micro-particle chain rotation via electrorotation integrated with machine vision technology†\",\"authors\":\"Zhijie Huan, Zexiang Chen, Xiongbiao Zheng, Yiwei Zhang, Jingjie Zhang and Weicheng Ma\",\"doi\":\"10.1039/D4AN00441H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microparticle rotation is an important process in biomedical engineering, such as biosensors, cell injection or cell morphology. Single particle rotation has been widely investigated, while rotation of particle chains has gained rare attention. In this paper, we utilize a noncontact manipulation method to rotate microparticle chains <em>via</em> electrorotation by designing an octuple-electrode array (OEA). Finite element simulations were conducted for analyzing the desired electrode field and optimizing the structure of microelectrode pairs. The direction of the electric field in the workspace is investigated with different voltage signal inputs through specially designed circuits. In the experiment, microparticles are driven to form several chains in the proposed electrode fields. With the rotation of the electric field, particle chains could be rotated synchronously. Automated rotation and detection of polystyrene microspheres and yeast cell chains are achieved using machine vision technology. Results show that the proposed method could be utilized to rotate ordered microparticles with an appropriate input signal.</p>\",\"PeriodicalId\":63,\"journal\":{\"name\":\"Analyst\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analyst\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/an/d4an00441h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/an/d4an00441h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

微颗粒旋转是生物医学工程中的一个重要过程,如生物传感器、细胞注射或细胞形态学。单个微粒的旋转已被广泛研究,而微粒链的旋转却鲜有人关注。在本文中,我们通过设计八电极阵列(OEA),利用一种非接触式操纵方法,通过电旋转实现微颗粒链的旋转。我们进行了有限元模拟,以分析所需的电极场并优化微电极对的结构。通过专门设计的电路输入不同的电压信号,研究了工作区的电场方向。在实验中,微颗粒在拟议的电极场中被驱动形成多个链。随着电场的旋转,粒子链可以同步旋转。聚苯乙烯微球和酵母细胞链的自动旋转和检测是通过机器视觉技术实现的。结果表明,所提出的方法可用于在适当的输入信号下旋转有序微粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and optimization of an octuple-electrode array for micro-particle chain rotation via electrorotation integrated with machine vision technology†

Microparticle rotation is an important process in biomedical engineering, such as biosensors, cell injection or cell morphology. Single particle rotation has been widely investigated, while rotation of particle chains has gained rare attention. In this paper, we utilize a noncontact manipulation method to rotate microparticle chains via electrorotation by designing an octuple-electrode array (OEA). Finite element simulations were conducted for analyzing the desired electrode field and optimizing the structure of microelectrode pairs. The direction of the electric field in the workspace is investigated with different voltage signal inputs through specially designed circuits. In the experiment, microparticles are driven to form several chains in the proposed electrode fields. With the rotation of the electric field, particle chains could be rotated synchronously. Automated rotation and detection of polystyrene microspheres and yeast cell chains are achieved using machine vision technology. Results show that the proposed method could be utilized to rotate ordered microparticles with an appropriate input signal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: The home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences
期刊最新文献
Screen printed 3D Microfluidic Paper-based and Modifier-Free Electroanalytical Device for Clozapine Sensing Evaluating Protocols for Reproducible Targeted Metabolomics by NMR Selection of DNA aptamers for detecting metronidazole and ibuprofen: two common additives in soft drinks Differentiation of Oligosaccharide Isomers by Direct Infusion Multidimensional Mass Spectrometry Highly sensitive and reproducible fluorescence sensor for continuously measuring hydrogen peroxide at sub-ppm level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1