基于统一规范损失函数的人工神经网络

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Advances in Computational Mathematics Pub Date : 2024-04-23 DOI:10.1007/s10444-024-10124-9
Vinesha Peiris, Vera Roshchina, Nadezda Sukhorukova
{"title":"基于统一规范损失函数的人工神经网络","authors":"Vinesha Peiris,&nbsp;Vera Roshchina,&nbsp;Nadezda Sukhorukova","doi":"10.1007/s10444-024-10124-9","DOIUrl":null,"url":null,"abstract":"<div><p>We explore the potential for using a nonsmooth loss function based on the max-norm in the training of an artificial neural network without hidden layers. We hypothesise that this may lead to superior classification results in some special cases where the training data are either very small or the class size is disproportional. Our numerical experiments performed on a simple artificial neural network with no hidden layer appear to confirm our hypothesis.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10124-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Artificial neural networks with uniform norm-based loss functions\",\"authors\":\"Vinesha Peiris,&nbsp;Vera Roshchina,&nbsp;Nadezda Sukhorukova\",\"doi\":\"10.1007/s10444-024-10124-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We explore the potential for using a nonsmooth loss function based on the max-norm in the training of an artificial neural network without hidden layers. We hypothesise that this may lead to superior classification results in some special cases where the training data are either very small or the class size is disproportional. Our numerical experiments performed on a simple artificial neural network with no hidden layer appear to confirm our hypothesis.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10444-024-10124-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10124-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10124-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们探讨了在无隐藏层的人工神经网络训练中使用基于最大值正态的非平滑损失函数的可能性。我们假设,在某些特殊情况下,即训练数据非常小或类的大小不成比例时,这可能会带来更优越的分类结果。我们在一个没有隐藏层的简单人工神经网络上进行的数值实验似乎证实了我们的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial neural networks with uniform norm-based loss functions

We explore the potential for using a nonsmooth loss function based on the max-norm in the training of an artificial neural network without hidden layers. We hypothesise that this may lead to superior classification results in some special cases where the training data are either very small or the class size is disproportional. Our numerical experiments performed on a simple artificial neural network with no hidden layer appear to confirm our hypothesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
期刊最新文献
Higher-order iterative decoupling for poroelasticity Adaptive quarklet tree approximation Efficient computation of the sinc matrix function for the integration of second-order differential equations Sobolev regularity of bivariate isogeometric finite element spaces in case of a geometry map with degenerate corner An optimal ansatz space for moving least squares approximation on spheres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1