利用低成本开源工具探测沿海沙质环境中的海底高程变化

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-18 DOI:10.1016/j.ohx.2024.e00532
Jacob L. Vincent, Alicia M. Wilson
{"title":"利用低成本开源工具探测沿海沙质环境中的海底高程变化","authors":"Jacob L. Vincent,&nbsp;Alicia M. Wilson","doi":"10.1016/j.ohx.2024.e00532","DOIUrl":null,"url":null,"abstract":"<div><p>Knowledge of sediment erosion and deposition can be useful for a variety of engineering, marine science, and environmental applications, but collecting detailed time-series measurements of the sediment–water interface can be challenging, particularly in coastal marine environments. We developed economical and open-source sediment level loggers to record sediment–water interface time-series data with accuracy up to 1 cm. The logger is composed of a programmable Circuit-Python (or Arduino) microcontroller and “breakout boards” that attach to a specially designed printed circuit board (PCB) and an array of evenly spaced photoresistors enclosed in a robust waterproof housing. These instruments were paired with temperature sensors in a study off the coast of Charleston, SC in the South Atlantic Bight where heat was used as a tracer to detect the flow of porewater in the permeable coastal sediments. This approach requires accurate knowledge of the depth of temperature sensors relative to the sediment–water interface. In this application, improved knowledge of the elevation of the sediment–water interface elevation data from the sediment level loggers reduced average root mean squared errors in modeling submarine groundwater discharge by as much as 25 %. The sediment level loggers can be easily installed, withstand long deployment times, and provide long-term recording abilities suitable for a range of environments.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000269/pdfft?md5=1fcb0ea1345d3a984274d8772c25fb5b&pid=1-s2.0-S2468067224000269-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Detecting changes in seafloor elevation in sandy coastal environments using low-cost opensource tooling\",\"authors\":\"Jacob L. Vincent,&nbsp;Alicia M. Wilson\",\"doi\":\"10.1016/j.ohx.2024.e00532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Knowledge of sediment erosion and deposition can be useful for a variety of engineering, marine science, and environmental applications, but collecting detailed time-series measurements of the sediment–water interface can be challenging, particularly in coastal marine environments. We developed economical and open-source sediment level loggers to record sediment–water interface time-series data with accuracy up to 1 cm. The logger is composed of a programmable Circuit-Python (or Arduino) microcontroller and “breakout boards” that attach to a specially designed printed circuit board (PCB) and an array of evenly spaced photoresistors enclosed in a robust waterproof housing. These instruments were paired with temperature sensors in a study off the coast of Charleston, SC in the South Atlantic Bight where heat was used as a tracer to detect the flow of porewater in the permeable coastal sediments. This approach requires accurate knowledge of the depth of temperature sensors relative to the sediment–water interface. In this application, improved knowledge of the elevation of the sediment–water interface elevation data from the sediment level loggers reduced average root mean squared errors in modeling submarine groundwater discharge by as much as 25 %. The sediment level loggers can be easily installed, withstand long deployment times, and provide long-term recording abilities suitable for a range of environments.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000269/pdfft?md5=1fcb0ea1345d3a984274d8772c25fb5b&pid=1-s2.0-S2468067224000269-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

有关沉积物侵蚀和沉积的知识可用于各种工程、海洋科学和环境应用,但要收集沉积物-水界面的详细时间序列测量数据却很困难,尤其是在沿岸海洋环境中。我们开发了经济、开源的沉积物水位记录仪,可记录沉积物-水界面时间序列数据,精度可达 1 厘米。记录仪由一个可编程的 Circuit-Python(或 Arduino)微控制器和 "突破板 "组成,"突破板 "可连接到一个专门设计的印刷电路板(PCB)和一个封装在坚固防水外壳中的均匀分布的光敏电阻阵列。在南大西洋海湾南卡罗来纳州查尔斯顿沿岸的一项研究中,这些仪器与温度传感器配对使用,用热量作为示踪剂来探测渗透性沿岸沉积物中孔隙水的流动情况。这种方法需要准确了解温度传感器相对于沉积物-水界面的深度。在这一应用中,通过沉积物水位记录仪获得的沉积物-水界面高程数据,可将海底地下水排 放建模的平均均方根误差减少 25%。沉积物水位记录仪易于安装,可承受较长的部署时间,并具有适合各种环境的长期记录能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting changes in seafloor elevation in sandy coastal environments using low-cost opensource tooling

Knowledge of sediment erosion and deposition can be useful for a variety of engineering, marine science, and environmental applications, but collecting detailed time-series measurements of the sediment–water interface can be challenging, particularly in coastal marine environments. We developed economical and open-source sediment level loggers to record sediment–water interface time-series data with accuracy up to 1 cm. The logger is composed of a programmable Circuit-Python (or Arduino) microcontroller and “breakout boards” that attach to a specially designed printed circuit board (PCB) and an array of evenly spaced photoresistors enclosed in a robust waterproof housing. These instruments were paired with temperature sensors in a study off the coast of Charleston, SC in the South Atlantic Bight where heat was used as a tracer to detect the flow of porewater in the permeable coastal sediments. This approach requires accurate knowledge of the depth of temperature sensors relative to the sediment–water interface. In this application, improved knowledge of the elevation of the sediment–water interface elevation data from the sediment level loggers reduced average root mean squared errors in modeling submarine groundwater discharge by as much as 25 %. The sediment level loggers can be easily installed, withstand long deployment times, and provide long-term recording abilities suitable for a range of environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1