高雷诺数下三维崖体摆的一自由度奔腾不稳定性

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL Journal of Fluids and Structures Pub Date : 2024-04-22 DOI:10.1016/j.jfluidstructs.2024.104123
Antoine Myskiw , Yann Haffner , François Paillé , Jacques Borée , Christophe Sicot
{"title":"高雷诺数下三维崖体摆的一自由度奔腾不稳定性","authors":"Antoine Myskiw ,&nbsp;Yann Haffner ,&nbsp;François Paillé ,&nbsp;Jacques Borée ,&nbsp;Christophe Sicot","doi":"10.1016/j.jfluidstructs.2024.104123","DOIUrl":null,"url":null,"abstract":"<div><p>The cross-flow swinging dynamics of a cube pendulum is studied experimentally in a flow at high Reynolds numbers (<span><math><mrow><mi>R</mi><mi>e</mi><mo>∼</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>) with a low free-stream turbulence intensity. A galloping instability is observed and results in the exponential growth of the swinging motion. The onset of galloping is found to be very sensitive to the static yaw angle of the cube. Despite the 3D geometry of the cube, flow mechanisms similar to the case of a square cylinder appear to govern the onset of the instability. A quasi-steady linear model of the motion is assessed to predict the stability of the pendulum.</p><p>For the lowest reduced velocity investigated (<span><math><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>18</mn><mo>.</mo><mn>5</mn></mrow></math></span>), unsteady phenomena arise during the saturation phase of the pendulum oscillations. From the analysis of the unsteady loads and the pressure distribution on the faces of the cube, an unsteady phase delay between the wake and the pendulum dynamics is identified. It produces an energy loss in the pendulum motion which favors its saturation.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"127 ","pages":"Article 104123"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-degree-of-freedom galloping instability of a 3D bluff body pendulum at high Reynolds number\",\"authors\":\"Antoine Myskiw ,&nbsp;Yann Haffner ,&nbsp;François Paillé ,&nbsp;Jacques Borée ,&nbsp;Christophe Sicot\",\"doi\":\"10.1016/j.jfluidstructs.2024.104123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The cross-flow swinging dynamics of a cube pendulum is studied experimentally in a flow at high Reynolds numbers (<span><math><mrow><mi>R</mi><mi>e</mi><mo>∼</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>) with a low free-stream turbulence intensity. A galloping instability is observed and results in the exponential growth of the swinging motion. The onset of galloping is found to be very sensitive to the static yaw angle of the cube. Despite the 3D geometry of the cube, flow mechanisms similar to the case of a square cylinder appear to govern the onset of the instability. A quasi-steady linear model of the motion is assessed to predict the stability of the pendulum.</p><p>For the lowest reduced velocity investigated (<span><math><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>18</mn><mo>.</mo><mn>5</mn></mrow></math></span>), unsteady phenomena arise during the saturation phase of the pendulum oscillations. From the analysis of the unsteady loads and the pressure distribution on the faces of the cube, an unsteady phase delay between the wake and the pendulum dynamics is identified. It produces an energy loss in the pendulum motion which favors its saturation.</p></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":\"127 \",\"pages\":\"Article 104123\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624000586\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000586","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在高雷诺数(Re∼105)、低自由流湍流强度的流动中,对立方摆的横流摆动动力学进行了实验研究。观察到了奔腾不稳定性,并导致摆动运动呈指数增长。研究发现,奔腾现象的发生对立方体的静态偏航角非常敏感。尽管立方体具有三维几何形状,但与方形圆柱体类似的流动机制似乎控制着不稳定性的发生。对运动的准稳定线性模型进行了评估,以预测摆锤的稳定性。对于所研究的最低降低速度(U∗=18.5),在摆锤振荡的饱和阶段会出现不稳定现象。通过对立方体表面的非稳态载荷和压力分布进行分析,确定了唤醒和摆锤动力学之间的非稳态相位延迟。它在摆锤运动中产生能量损失,有利于其饱和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One-degree-of-freedom galloping instability of a 3D bluff body pendulum at high Reynolds number

The cross-flow swinging dynamics of a cube pendulum is studied experimentally in a flow at high Reynolds numbers (Re105) with a low free-stream turbulence intensity. A galloping instability is observed and results in the exponential growth of the swinging motion. The onset of galloping is found to be very sensitive to the static yaw angle of the cube. Despite the 3D geometry of the cube, flow mechanisms similar to the case of a square cylinder appear to govern the onset of the instability. A quasi-steady linear model of the motion is assessed to predict the stability of the pendulum.

For the lowest reduced velocity investigated (U=18.5), unsteady phenomena arise during the saturation phase of the pendulum oscillations. From the analysis of the unsteady loads and the pressure distribution on the faces of the cube, an unsteady phase delay between the wake and the pendulum dynamics is identified. It produces an energy loss in the pendulum motion which favors its saturation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
期刊最新文献
Stress relaxation and thermo-visco-elastic effects in fluid-filled slits and fluid-loaded plates Numerical Prediction of Two-Dimensional Coupled Galloping and Vortex-Induced Vibration of Square Cylinders Under Symmetric/Asymmetric Flow Orientations A three-dimensional nonlinear hydroelastic model for rectangular floating elastic plates and the examination on the peak frequency with maximum nonlinear response Numerical study of consecutive water entries in flowing water with twin spheres side-by-side A new approach for spatio-temporal interface treatment in fluid–solid interaction using artificial neural networks employing coupled partitioned fluid–solid solvers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1