Antoine Myskiw , Yann Haffner , François Paillé , Jacques Borée , Christophe Sicot
{"title":"高雷诺数下三维崖体摆的一自由度奔腾不稳定性","authors":"Antoine Myskiw , Yann Haffner , François Paillé , Jacques Borée , Christophe Sicot","doi":"10.1016/j.jfluidstructs.2024.104123","DOIUrl":null,"url":null,"abstract":"<div><p>The cross-flow swinging dynamics of a cube pendulum is studied experimentally in a flow at high Reynolds numbers (<span><math><mrow><mi>R</mi><mi>e</mi><mo>∼</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>) with a low free-stream turbulence intensity. A galloping instability is observed and results in the exponential growth of the swinging motion. The onset of galloping is found to be very sensitive to the static yaw angle of the cube. Despite the 3D geometry of the cube, flow mechanisms similar to the case of a square cylinder appear to govern the onset of the instability. A quasi-steady linear model of the motion is assessed to predict the stability of the pendulum.</p><p>For the lowest reduced velocity investigated (<span><math><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>18</mn><mo>.</mo><mn>5</mn></mrow></math></span>), unsteady phenomena arise during the saturation phase of the pendulum oscillations. From the analysis of the unsteady loads and the pressure distribution on the faces of the cube, an unsteady phase delay between the wake and the pendulum dynamics is identified. It produces an energy loss in the pendulum motion which favors its saturation.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"127 ","pages":"Article 104123"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-degree-of-freedom galloping instability of a 3D bluff body pendulum at high Reynolds number\",\"authors\":\"Antoine Myskiw , Yann Haffner , François Paillé , Jacques Borée , Christophe Sicot\",\"doi\":\"10.1016/j.jfluidstructs.2024.104123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The cross-flow swinging dynamics of a cube pendulum is studied experimentally in a flow at high Reynolds numbers (<span><math><mrow><mi>R</mi><mi>e</mi><mo>∼</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>) with a low free-stream turbulence intensity. A galloping instability is observed and results in the exponential growth of the swinging motion. The onset of galloping is found to be very sensitive to the static yaw angle of the cube. Despite the 3D geometry of the cube, flow mechanisms similar to the case of a square cylinder appear to govern the onset of the instability. A quasi-steady linear model of the motion is assessed to predict the stability of the pendulum.</p><p>For the lowest reduced velocity investigated (<span><math><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>18</mn><mo>.</mo><mn>5</mn></mrow></math></span>), unsteady phenomena arise during the saturation phase of the pendulum oscillations. From the analysis of the unsteady loads and the pressure distribution on the faces of the cube, an unsteady phase delay between the wake and the pendulum dynamics is identified. It produces an energy loss in the pendulum motion which favors its saturation.</p></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":\"127 \",\"pages\":\"Article 104123\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624000586\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000586","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
One-degree-of-freedom galloping instability of a 3D bluff body pendulum at high Reynolds number
The cross-flow swinging dynamics of a cube pendulum is studied experimentally in a flow at high Reynolds numbers () with a low free-stream turbulence intensity. A galloping instability is observed and results in the exponential growth of the swinging motion. The onset of galloping is found to be very sensitive to the static yaw angle of the cube. Despite the 3D geometry of the cube, flow mechanisms similar to the case of a square cylinder appear to govern the onset of the instability. A quasi-steady linear model of the motion is assessed to predict the stability of the pendulum.
For the lowest reduced velocity investigated (), unsteady phenomena arise during the saturation phase of the pendulum oscillations. From the analysis of the unsteady loads and the pressure distribution on the faces of the cube, an unsteady phase delay between the wake and the pendulum dynamics is identified. It produces an energy loss in the pendulum motion which favors its saturation.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.