利用胸部 X 光图像诊断 COVID-19 的视觉转换器机器学习模型

Tianyi Chen , Ian Philippi , Quoc Bao Phan , Linh Nguyen , Ngoc Thang Bui , Carlo daCunha , Tuy Tan Nguyen
{"title":"利用胸部 X 光图像诊断 COVID-19 的视觉转换器机器学习模型","authors":"Tianyi Chen ,&nbsp;Ian Philippi ,&nbsp;Quoc Bao Phan ,&nbsp;Linh Nguyen ,&nbsp;Ngoc Thang Bui ,&nbsp;Carlo daCunha ,&nbsp;Tuy Tan Nguyen","doi":"10.1016/j.health.2024.100332","DOIUrl":null,"url":null,"abstract":"<div><p>This study leverages machine learning to enhance the diagnostic accuracy of COVID-19 using chest X-rays. The study evaluates various architectures, including efficient neural networks (EfficientNet), multiscale vision transformers (MViT), efficient vision transformers (EfficientViT), and vision transformers (ViT), against a comprehensive open-source dataset comprising 3616 COVID-19, 6012 lung opacity, 10192 normal, and 1345 viral pneumonia images. The analysis, focusing on loss functions and evaluation metrics, demonstrates distinct performance variations among these models. Notably, multiscale models like MViT and EfficientNet tend towards overfitting. Conversely, our vision transformer model, innovatively fine-tuned (FT) on the encoder blocks, exhibits superior accuracy: 95.79% in four-class, 99.57% in three-class, and similarly high performance in binary classifications, along with a recall of 98.58%, precision of 98.87%, F1 score of 98.73%, specificity of 99.76%, and area under the receiver operating characteristic (ROC) curve (AUC) of 0.9993. The study confirms the vision transformer model’s efficacy through rigorous validation using quantitative metrics and visualization techniques and illustrates its superiority over conventional models. The innovative fine-tuning method applied to vision transformers presents a significant advancement in medical image analysis, offering a promising avenue for improving the accuracy and reliability of COVID-19 diagnosis from chest X-ray images.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100332"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442524000340/pdfft?md5=85740d35301584349f19eca5be1ec73f&pid=1-s2.0-S2772442524000340-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A vision transformer machine learning model for COVID-19 diagnosis using chest X-ray images\",\"authors\":\"Tianyi Chen ,&nbsp;Ian Philippi ,&nbsp;Quoc Bao Phan ,&nbsp;Linh Nguyen ,&nbsp;Ngoc Thang Bui ,&nbsp;Carlo daCunha ,&nbsp;Tuy Tan Nguyen\",\"doi\":\"10.1016/j.health.2024.100332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study leverages machine learning to enhance the diagnostic accuracy of COVID-19 using chest X-rays. The study evaluates various architectures, including efficient neural networks (EfficientNet), multiscale vision transformers (MViT), efficient vision transformers (EfficientViT), and vision transformers (ViT), against a comprehensive open-source dataset comprising 3616 COVID-19, 6012 lung opacity, 10192 normal, and 1345 viral pneumonia images. The analysis, focusing on loss functions and evaluation metrics, demonstrates distinct performance variations among these models. Notably, multiscale models like MViT and EfficientNet tend towards overfitting. Conversely, our vision transformer model, innovatively fine-tuned (FT) on the encoder blocks, exhibits superior accuracy: 95.79% in four-class, 99.57% in three-class, and similarly high performance in binary classifications, along with a recall of 98.58%, precision of 98.87%, F1 score of 98.73%, specificity of 99.76%, and area under the receiver operating characteristic (ROC) curve (AUC) of 0.9993. The study confirms the vision transformer model’s efficacy through rigorous validation using quantitative metrics and visualization techniques and illustrates its superiority over conventional models. The innovative fine-tuning method applied to vision transformers presents a significant advancement in medical image analysis, offering a promising avenue for improving the accuracy and reliability of COVID-19 diagnosis from chest X-ray images.</p></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"5 \",\"pages\":\"Article 100332\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000340/pdfft?md5=85740d35301584349f19eca5be1ec73f&pid=1-s2.0-S2772442524000340-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用机器学习来提高 COVID-19 使用胸部 X 光片进行诊断的准确性。该研究评估了各种架构,包括高效神经网络(EfficientNet)、多尺度视觉转换器(MViT)、高效视觉转换器(EfficientViT)和视觉转换器(ViT),并对一个包含 3616 张 COVID-19、6012 张肺不张、10192 张正常和 1345 张病毒性肺炎图像的综合开源数据集进行了评估。分析的重点是损失函数和评估指标,结果表明这些模型之间存在明显的性能差异。值得注意的是,MViT 和 EfficientNet 等多尺度模型倾向于过度拟合。相反,我们的视觉转换器模型对编码器块进行了创新性的微调(FT),表现出卓越的准确性:四级分类准确率为 95.79%,三级分类准确率为 99.57%,二元分类准确率同样很高,召回率为 98.58%,精确率为 98.87%,F1 分数为 98.73%,特异性为 99.76%,接收器操作特征曲线下面积(AUC)为 0.9993。该研究通过使用定量指标和可视化技术进行严格验证,证实了视觉转换器模型的有效性,并说明其优于传统模型。应用于视觉转换器的创新微调方法是医学图像分析领域的一大进步,为提高胸部X光图像诊断COVID-19的准确性和可靠性提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A vision transformer machine learning model for COVID-19 diagnosis using chest X-ray images

This study leverages machine learning to enhance the diagnostic accuracy of COVID-19 using chest X-rays. The study evaluates various architectures, including efficient neural networks (EfficientNet), multiscale vision transformers (MViT), efficient vision transformers (EfficientViT), and vision transformers (ViT), against a comprehensive open-source dataset comprising 3616 COVID-19, 6012 lung opacity, 10192 normal, and 1345 viral pneumonia images. The analysis, focusing on loss functions and evaluation metrics, demonstrates distinct performance variations among these models. Notably, multiscale models like MViT and EfficientNet tend towards overfitting. Conversely, our vision transformer model, innovatively fine-tuned (FT) on the encoder blocks, exhibits superior accuracy: 95.79% in four-class, 99.57% in three-class, and similarly high performance in binary classifications, along with a recall of 98.58%, precision of 98.87%, F1 score of 98.73%, specificity of 99.76%, and area under the receiver operating characteristic (ROC) curve (AUC) of 0.9993. The study confirms the vision transformer model’s efficacy through rigorous validation using quantitative metrics and visualization techniques and illustrates its superiority over conventional models. The innovative fine-tuning method applied to vision transformers presents a significant advancement in medical image analysis, offering a promising avenue for improving the accuracy and reliability of COVID-19 diagnosis from chest X-ray images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
期刊最新文献
Optimized early fusion of handcrafted and deep learning descriptors for voice pathology detection and classification A deep neural network model with spectral correlation function for electrocardiogram classification and diagnosis of atrial fibrillation An ensemble convolutional neural network model for brain stroke prediction using brain computed tomography images A hierarchical Bayesian approach for identifying socioeconomic factors influencing self-rated health in Japan An electrocardiogram signal classification using a hybrid machine learning and deep learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1