设计具有免疫侵袭性的异体细胞免疫疗法

IF 67.7 1区 医学 Q1 IMMUNOLOGY Nature Reviews Immunology Pub Date : 2024-04-24 DOI:10.1038/s41577-024-01022-8
Karen E. Martin, Quirin Hammer, Karlo Perica, Michel Sadelain, Karl-Johan Malmberg
{"title":"设计具有免疫侵袭性的异体细胞免疫疗法","authors":"Karen E. Martin, Quirin Hammer, Karlo Perica, Michel Sadelain, Karl-Johan Malmberg","doi":"10.1038/s41577-024-01022-8","DOIUrl":null,"url":null,"abstract":"Allogeneic cellular immunotherapies hold a great promise for cancer treatment owing to their potential cost-effectiveness, scalability and on-demand availability. However, immune rejection of adoptively transferred allogeneic T and natural killer (NK) cells is a substantial obstacle to achieving clinical responses that are comparable to responses obtained with current autologous chimeric antigen receptor T cell therapies. In this Perspective, we discuss strategies to confer cell-intrinsic, immune-evasive properties to allogeneic T cells and NK cells in order to prevent or delay their immune rejection, thereby widening the therapeutic window. We discuss how common viral and cancer immune escape mechanisms can serve as a blueprint for improving the persistence of off-the-shelf allogeneic cell therapies. The prospects of harnessing genome editing and synthetic biology to design cell-based precision immunotherapies extend beyond programming target specificities and require careful consideration of innate and adaptive responses in the recipient that may curtail the biodistribution, in vivo expansion and persistence of cellular therapeutics. Genome editing approaches can be used to confer immune-evasive properties to allogeneic cellular immunotherapies, with the aim of achieving persistent responses and efficiencies that are comparable to those of autologous chimeric antigen receptor T cell therapies. This Perspective discusses how current knowledge about viral or tumour immune evasion could be incorporated into the design of off-the-shelf tumour-specific T and NK cells for the production of cost-effective and scalable cancer immunotherapies.","PeriodicalId":19049,"journal":{"name":"Nature Reviews Immunology","volume":null,"pages":null},"PeriodicalIF":67.7000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering immune-evasive allogeneic cellular immunotherapies\",\"authors\":\"Karen E. Martin, Quirin Hammer, Karlo Perica, Michel Sadelain, Karl-Johan Malmberg\",\"doi\":\"10.1038/s41577-024-01022-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Allogeneic cellular immunotherapies hold a great promise for cancer treatment owing to their potential cost-effectiveness, scalability and on-demand availability. However, immune rejection of adoptively transferred allogeneic T and natural killer (NK) cells is a substantial obstacle to achieving clinical responses that are comparable to responses obtained with current autologous chimeric antigen receptor T cell therapies. In this Perspective, we discuss strategies to confer cell-intrinsic, immune-evasive properties to allogeneic T cells and NK cells in order to prevent or delay their immune rejection, thereby widening the therapeutic window. We discuss how common viral and cancer immune escape mechanisms can serve as a blueprint for improving the persistence of off-the-shelf allogeneic cell therapies. The prospects of harnessing genome editing and synthetic biology to design cell-based precision immunotherapies extend beyond programming target specificities and require careful consideration of innate and adaptive responses in the recipient that may curtail the biodistribution, in vivo expansion and persistence of cellular therapeutics. Genome editing approaches can be used to confer immune-evasive properties to allogeneic cellular immunotherapies, with the aim of achieving persistent responses and efficiencies that are comparable to those of autologous chimeric antigen receptor T cell therapies. This Perspective discusses how current knowledge about viral or tumour immune evasion could be incorporated into the design of off-the-shelf tumour-specific T and NK cells for the production of cost-effective and scalable cancer immunotherapies.\",\"PeriodicalId\":19049,\"journal\":{\"name\":\"Nature Reviews Immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":67.7000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41577-024-01022-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41577-024-01022-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

异体细胞免疫疗法因其潜在的成本效益、可扩展性和按需可用性而在癌症治疗中大有可为。然而,要获得与目前自体嵌合抗原受体T细胞疗法相当的临床反应,采纳转移异体T细胞和自然杀伤(NK)细胞的免疫排斥是一大障碍。在本《视角》中,我们讨论了赋予异体T细胞和NK细胞细胞固有免疫侵袭特性的策略,以防止或延缓它们的免疫排斥反应,从而拓宽治疗窗口。我们将讨论常见的病毒和癌症免疫逃逸机制如何成为改善现成异体细胞疗法持久性的蓝图。利用基因组编辑和合成生物学来设计基于细胞的精准免疫疗法的前景不仅仅局限于编程靶点特异性,还需要仔细考虑受体的先天性和适应性反应,这些反应可能会限制细胞疗法的生物分布、体内扩增和持久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering immune-evasive allogeneic cellular immunotherapies
Allogeneic cellular immunotherapies hold a great promise for cancer treatment owing to their potential cost-effectiveness, scalability and on-demand availability. However, immune rejection of adoptively transferred allogeneic T and natural killer (NK) cells is a substantial obstacle to achieving clinical responses that are comparable to responses obtained with current autologous chimeric antigen receptor T cell therapies. In this Perspective, we discuss strategies to confer cell-intrinsic, immune-evasive properties to allogeneic T cells and NK cells in order to prevent or delay their immune rejection, thereby widening the therapeutic window. We discuss how common viral and cancer immune escape mechanisms can serve as a blueprint for improving the persistence of off-the-shelf allogeneic cell therapies. The prospects of harnessing genome editing and synthetic biology to design cell-based precision immunotherapies extend beyond programming target specificities and require careful consideration of innate and adaptive responses in the recipient that may curtail the biodistribution, in vivo expansion and persistence of cellular therapeutics. Genome editing approaches can be used to confer immune-evasive properties to allogeneic cellular immunotherapies, with the aim of achieving persistent responses and efficiencies that are comparable to those of autologous chimeric antigen receptor T cell therapies. This Perspective discusses how current knowledge about viral or tumour immune evasion could be incorporated into the design of off-the-shelf tumour-specific T and NK cells for the production of cost-effective and scalable cancer immunotherapies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Immunology
Nature Reviews Immunology 医学-免疫学
CiteScore
93.40
自引率
0.40%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Immunology is a journal that provides comprehensive coverage of all areas of immunology, including fundamental mechanisms and applied aspects. It has two international standard serial numbers (ISSN): 1474-1733 for print and 1474-1741 for online. In addition to review articles, the journal also features recent developments and new primary papers in the field, as well as reflections on influential people, papers, and events in the development of immunology. The subjects covered by Nature Reviews Immunology include allergy and asthma, autoimmunity, antigen processing and presentation, apoptosis and cell death, chemokines and chemokine receptors, cytokines and cytokine receptors, development and function of cells of the immune system, haematopoiesis, infection and immunity, immunotherapy, innate immunity, mucosal immunology and the microbiota, regulation of the immune response, signalling in the immune system, transplantation, tumour immunology and immunotherapy, and vaccine development.
期刊最新文献
Adipokines: masterminds of metabolic inflammation Decoding the human prenatal immune system with single-cell multi-omics Insights into immune cell–fibroblast communication in heart disease Obesity-associated intratumoral acidity promotes pro-tumorigenic macrophages Targeting ER stress sensor restores immunogenicity of chemotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1