{"title":"利用近红外超光谱成像技术解决牛至干叶掺假问题","authors":"Veronica Ferrari , Rosalba Calvini , Camilla Menozzi , Alessandro Ulrici , Marco Bragolusi , Roberto Piro , Alessandra Tata , Michele Suman , Giorgia Foca","doi":"10.1016/j.chemolab.2024.105133","DOIUrl":null,"url":null,"abstract":"<div><p>Dried oregano leaves are particularly prone to adulteration because of their widespread distribution and their easy mixing with leaves of other plants of lower commercial value, such as olive, myrtle, strawberry tree, or sumac. To reveal the presence of adulteration, in this study we considered an untargeted analytical approach, which instead of involving the <em>a priori</em> selection of specific compounds of interest is focused on defining the characteristic spectral signature of authentic oregano with respect to its most frequent adulterants. NIR HyperSpectral Imaging (NIR-HSI) represents a state-of-the-art, rapid and non-destructive technique, allowing for the collection of both spectral and spatial information from the sample, making it particularly suitable for characterizing visually heterogeneous samples.</p><p>Authentication issues are typically assessed through class modelling techniques and Soft Independent Modelling of class Analogy (SIMCA) is one of the most used algorithms in this scenario. However, the high variability and heterogeneity within the authentic oregano class resulted in poor outcomes when SIMCA was applied. As an alternative, Soft Partial Least Squares Discriminant Analysis (Soft PLS-DA) algorithm was applied to differentiate authentic oregano samples from pure adulterants. Soft PLS-DA represents a hybrid approach that combines the advantages of both discriminant and class modelling techniques. The resultant classification model has indeed led to promising results, achieving a prediction efficiency of 92.9 %. Finally, based on the percentage of pixels predicted as oregano in the Soft-PLSDA prediction images, a threshold value of 10 % was established, serving as a detection limit of NIR-HSI to distinguish authentic oregano samples from adulterated ones.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"249 ","pages":"Article 105133"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016974392400073X/pdfft?md5=9ca1205b6902ee41304da3031bdead5a&pid=1-s2.0-S016974392400073X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Addressing adulteration challenges of dried oregano leaves by NIR HyperSpectral Imaging\",\"authors\":\"Veronica Ferrari , Rosalba Calvini , Camilla Menozzi , Alessandro Ulrici , Marco Bragolusi , Roberto Piro , Alessandra Tata , Michele Suman , Giorgia Foca\",\"doi\":\"10.1016/j.chemolab.2024.105133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dried oregano leaves are particularly prone to adulteration because of their widespread distribution and their easy mixing with leaves of other plants of lower commercial value, such as olive, myrtle, strawberry tree, or sumac. To reveal the presence of adulteration, in this study we considered an untargeted analytical approach, which instead of involving the <em>a priori</em> selection of specific compounds of interest is focused on defining the characteristic spectral signature of authentic oregano with respect to its most frequent adulterants. NIR HyperSpectral Imaging (NIR-HSI) represents a state-of-the-art, rapid and non-destructive technique, allowing for the collection of both spectral and spatial information from the sample, making it particularly suitable for characterizing visually heterogeneous samples.</p><p>Authentication issues are typically assessed through class modelling techniques and Soft Independent Modelling of class Analogy (SIMCA) is one of the most used algorithms in this scenario. However, the high variability and heterogeneity within the authentic oregano class resulted in poor outcomes when SIMCA was applied. As an alternative, Soft Partial Least Squares Discriminant Analysis (Soft PLS-DA) algorithm was applied to differentiate authentic oregano samples from pure adulterants. Soft PLS-DA represents a hybrid approach that combines the advantages of both discriminant and class modelling techniques. The resultant classification model has indeed led to promising results, achieving a prediction efficiency of 92.9 %. Finally, based on the percentage of pixels predicted as oregano in the Soft-PLSDA prediction images, a threshold value of 10 % was established, serving as a detection limit of NIR-HSI to distinguish authentic oregano samples from adulterated ones.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"249 \",\"pages\":\"Article 105133\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016974392400073X/pdfft?md5=9ca1205b6902ee41304da3031bdead5a&pid=1-s2.0-S016974392400073X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016974392400073X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016974392400073X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Addressing adulteration challenges of dried oregano leaves by NIR HyperSpectral Imaging
Dried oregano leaves are particularly prone to adulteration because of their widespread distribution and their easy mixing with leaves of other plants of lower commercial value, such as olive, myrtle, strawberry tree, or sumac. To reveal the presence of adulteration, in this study we considered an untargeted analytical approach, which instead of involving the a priori selection of specific compounds of interest is focused on defining the characteristic spectral signature of authentic oregano with respect to its most frequent adulterants. NIR HyperSpectral Imaging (NIR-HSI) represents a state-of-the-art, rapid and non-destructive technique, allowing for the collection of both spectral and spatial information from the sample, making it particularly suitable for characterizing visually heterogeneous samples.
Authentication issues are typically assessed through class modelling techniques and Soft Independent Modelling of class Analogy (SIMCA) is one of the most used algorithms in this scenario. However, the high variability and heterogeneity within the authentic oregano class resulted in poor outcomes when SIMCA was applied. As an alternative, Soft Partial Least Squares Discriminant Analysis (Soft PLS-DA) algorithm was applied to differentiate authentic oregano samples from pure adulterants. Soft PLS-DA represents a hybrid approach that combines the advantages of both discriminant and class modelling techniques. The resultant classification model has indeed led to promising results, achieving a prediction efficiency of 92.9 %. Finally, based on the percentage of pixels predicted as oregano in the Soft-PLSDA prediction images, a threshold value of 10 % was established, serving as a detection limit of NIR-HSI to distinguish authentic oregano samples from adulterated ones.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.