Ryan Han MS , Julián N Acosta MD , Zahra Shakeri PhD , Prof John P A Ioannidis MD DSc , Prof Eric J Topol MD , Pranav Rajpurkar PhD
{"title":"评估临床实践中人工智能的随机对照试验:范围界定综述","authors":"Ryan Han MS , Julián N Acosta MD , Zahra Shakeri PhD , Prof John P A Ioannidis MD DSc , Prof Eric J Topol MD , Pranav Rajpurkar PhD","doi":"10.1016/S2589-7500(24)00047-5","DOIUrl":null,"url":null,"abstract":"<div><p>This scoping review of randomised controlled trials on artificial intelligence (AI) in clinical practice reveals an expanding interest in AI across clinical specialties and locations. The USA and China are leading in the number of trials, with a focus on deep learning systems for medical imaging, particularly in gastroenterology and radiology. A majority of trials (70 [81%] of 86) report positive primary endpoints, primarily related to diagnostic yield or performance; however, the predominance of single-centre trials, little demographic reporting, and varying reports of operational efficiency raise concerns about the generalisability and practicality of these results. Despite the promising outcomes, considering the likelihood of publication bias and the need for more comprehensive research including multicentre trials, diverse outcome measures, and improved reporting standards is crucial. Future AI trials should prioritise patient-relevant outcomes to fully understand AI's true effects and limitations in health care.</p></div>","PeriodicalId":48534,"journal":{"name":"Lancet Digital Health","volume":"6 5","pages":"Pages e367-e373"},"PeriodicalIF":23.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589750024000475/pdfft?md5=9d9e22118ce0622e5f971accc65430f7&pid=1-s2.0-S2589750024000475-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review\",\"authors\":\"Ryan Han MS , Julián N Acosta MD , Zahra Shakeri PhD , Prof John P A Ioannidis MD DSc , Prof Eric J Topol MD , Pranav Rajpurkar PhD\",\"doi\":\"10.1016/S2589-7500(24)00047-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This scoping review of randomised controlled trials on artificial intelligence (AI) in clinical practice reveals an expanding interest in AI across clinical specialties and locations. The USA and China are leading in the number of trials, with a focus on deep learning systems for medical imaging, particularly in gastroenterology and radiology. A majority of trials (70 [81%] of 86) report positive primary endpoints, primarily related to diagnostic yield or performance; however, the predominance of single-centre trials, little demographic reporting, and varying reports of operational efficiency raise concerns about the generalisability and practicality of these results. Despite the promising outcomes, considering the likelihood of publication bias and the need for more comprehensive research including multicentre trials, diverse outcome measures, and improved reporting standards is crucial. Future AI trials should prioritise patient-relevant outcomes to fully understand AI's true effects and limitations in health care.</p></div>\",\"PeriodicalId\":48534,\"journal\":{\"name\":\"Lancet Digital Health\",\"volume\":\"6 5\",\"pages\":\"Pages e367-e373\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589750024000475/pdfft?md5=9d9e22118ce0622e5f971accc65430f7&pid=1-s2.0-S2589750024000475-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lancet Digital Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589750024000475\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Digital Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589750024000475","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review
This scoping review of randomised controlled trials on artificial intelligence (AI) in clinical practice reveals an expanding interest in AI across clinical specialties and locations. The USA and China are leading in the number of trials, with a focus on deep learning systems for medical imaging, particularly in gastroenterology and radiology. A majority of trials (70 [81%] of 86) report positive primary endpoints, primarily related to diagnostic yield or performance; however, the predominance of single-centre trials, little demographic reporting, and varying reports of operational efficiency raise concerns about the generalisability and practicality of these results. Despite the promising outcomes, considering the likelihood of publication bias and the need for more comprehensive research including multicentre trials, diverse outcome measures, and improved reporting standards is crucial. Future AI trials should prioritise patient-relevant outcomes to fully understand AI's true effects and limitations in health care.
期刊介绍:
The Lancet Digital Health publishes important, innovative, and practice-changing research on any topic connected with digital technology in clinical medicine, public health, and global health.
The journal’s open access content crosses subject boundaries, building bridges between health professionals and researchers.By bringing together the most important advances in this multidisciplinary field,The Lancet Digital Health is the most prominent publishing venue in digital health.
We publish a range of content types including Articles,Review, Comment, and Correspondence, contributing to promoting digital technologies in health practice worldwide.