Raktim Ghosh , Pinaki Biswas , Abhinaba Chakraborty , Suchetana Pal , Moubonny Das , Somasri Dam
{"title":"EhABP 是一种含有 BAR 同源结构域的蛋白质,它是 EhAK7(一种组织溶解虫中的极光激酶同源物)的新型互作因子","authors":"Raktim Ghosh , Pinaki Biswas , Abhinaba Chakraborty , Suchetana Pal , Moubonny Das , Somasri Dam","doi":"10.1016/j.crbiot.2024.100216","DOIUrl":null,"url":null,"abstract":"<div><p>Biomolecular interactions among proteins are fundamental for all cellular functions. The chromosome segregation proteins are the key regulators of inherent functions in the living cells. Aurora kinases have drawn much interest as possible drug targets in higher eukaryotes. The human pathogen, <em>E. histolytica</em> is the causative agent of amoebiasis, and a major health concern in developing countries. However, there is no vaccine against it and the popular drugs- metronidazole, tinidazole etc. show significant side effects in humans. To identify new controlling agents, we must have a thorough knowledge about the cell cycle regulatory proteins of <em>E. histolytica</em>, as many unusual cell cycle events can be found in this parasite, that do not happen in human cells. This study describes the first comprehensive analysis of the interaction between an aurora kinase protein and a BAR homology domain containing protein. Fes/CIP4 and EFC/F-BAR homology domain (FCH) containing protein, EhABP has been identified as a novel interactor of EhAK7, an aurora kinase homolog from <em>E. histolytica</em> by yeast two-hybrid screening against the cDNA library of <em>E. histolytica</em> and their interaction has been proved by <em>in vitro</em> binding assay. Both the N and C-terminus of EhAK7 are responsible for this interaction. We found the reduced expression of EhAK7 and EhABP genes, defects in actin filament organization and irregular-shaped nucleus in the trophozoites treated with an aurora kinase inhibitor VX-680. This indicates that EhAK7 play an important role in the cytokinesis of <em>E. histolytica</em> through the interaction with a BAR homology domain containing protein, EhABP.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259026282400042X/pdfft?md5=a34104d85ebf1154fae15c78b59a9016&pid=1-s2.0-S259026282400042X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A BAR homology domain containing protein, EhABP is the novel interactor of EhAK7, an aurora kinase homolog in E. histolytica\",\"authors\":\"Raktim Ghosh , Pinaki Biswas , Abhinaba Chakraborty , Suchetana Pal , Moubonny Das , Somasri Dam\",\"doi\":\"10.1016/j.crbiot.2024.100216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biomolecular interactions among proteins are fundamental for all cellular functions. The chromosome segregation proteins are the key regulators of inherent functions in the living cells. Aurora kinases have drawn much interest as possible drug targets in higher eukaryotes. The human pathogen, <em>E. histolytica</em> is the causative agent of amoebiasis, and a major health concern in developing countries. However, there is no vaccine against it and the popular drugs- metronidazole, tinidazole etc. show significant side effects in humans. To identify new controlling agents, we must have a thorough knowledge about the cell cycle regulatory proteins of <em>E. histolytica</em>, as many unusual cell cycle events can be found in this parasite, that do not happen in human cells. This study describes the first comprehensive analysis of the interaction between an aurora kinase protein and a BAR homology domain containing protein. Fes/CIP4 and EFC/F-BAR homology domain (FCH) containing protein, EhABP has been identified as a novel interactor of EhAK7, an aurora kinase homolog from <em>E. histolytica</em> by yeast two-hybrid screening against the cDNA library of <em>E. histolytica</em> and their interaction has been proved by <em>in vitro</em> binding assay. Both the N and C-terminus of EhAK7 are responsible for this interaction. We found the reduced expression of EhAK7 and EhABP genes, defects in actin filament organization and irregular-shaped nucleus in the trophozoites treated with an aurora kinase inhibitor VX-680. This indicates that EhAK7 play an important role in the cytokinesis of <em>E. histolytica</em> through the interaction with a BAR homology domain containing protein, EhABP.</p></div>\",\"PeriodicalId\":52676,\"journal\":{\"name\":\"Current Research in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259026282400042X/pdfft?md5=a34104d85ebf1154fae15c78b59a9016&pid=1-s2.0-S259026282400042X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259026282400042X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259026282400042X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A BAR homology domain containing protein, EhABP is the novel interactor of EhAK7, an aurora kinase homolog in E. histolytica
Biomolecular interactions among proteins are fundamental for all cellular functions. The chromosome segregation proteins are the key regulators of inherent functions in the living cells. Aurora kinases have drawn much interest as possible drug targets in higher eukaryotes. The human pathogen, E. histolytica is the causative agent of amoebiasis, and a major health concern in developing countries. However, there is no vaccine against it and the popular drugs- metronidazole, tinidazole etc. show significant side effects in humans. To identify new controlling agents, we must have a thorough knowledge about the cell cycle regulatory proteins of E. histolytica, as many unusual cell cycle events can be found in this parasite, that do not happen in human cells. This study describes the first comprehensive analysis of the interaction between an aurora kinase protein and a BAR homology domain containing protein. Fes/CIP4 and EFC/F-BAR homology domain (FCH) containing protein, EhABP has been identified as a novel interactor of EhAK7, an aurora kinase homolog from E. histolytica by yeast two-hybrid screening against the cDNA library of E. histolytica and their interaction has been proved by in vitro binding assay. Both the N and C-terminus of EhAK7 are responsible for this interaction. We found the reduced expression of EhAK7 and EhABP genes, defects in actin filament organization and irregular-shaped nucleus in the trophozoites treated with an aurora kinase inhibitor VX-680. This indicates that EhAK7 play an important role in the cytokinesis of E. histolytica through the interaction with a BAR homology domain containing protein, EhABP.
期刊介绍:
Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines.
Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.