盐溶液中 60NiTi 合金的三电化学研究

Anthony Onyebuchi Okoani , Ashveen Nand , Maziar Ramezani
{"title":"盐溶液中 60NiTi 合金的三电化学研究","authors":"Anthony Onyebuchi Okoani ,&nbsp;Ashveen Nand ,&nbsp;Maziar Ramezani","doi":"10.1016/j.jalmes.2024.100074","DOIUrl":null,"url":null,"abstract":"<div><p>This research explores the tribocorrosion behaviour of 60NiTi alloy, also known as NiTiNOL60, when exposed to a saline environment. Our investigation focuses on understanding the relationship between corrosion and wear rates and assessing surface damage and material degradation. To conduct our experiments, we employed a linear reciprocating ball-on-plate tribometer coupled with electrochemical polarisation using a three-electrode cell configuration to assess the combined effects of corrosion and sliding wear. Surface characterisation was carried out through scanning electron microscopy and energy dispersion spectroscopy, revealing the material to be a Ni-rich 60NiTi alloy, with surface oxidation evident in the electrolyte medium. Our electrochemical findings indicate the occurrence of localised corrosion in both cathodic and anodic regimes, with corrosion pit nucleation, cavities, and cracks being accelerated by reciprocating sliding and corrosion potential. These interactions exposed the material surface to various wear mechanisms, including abrasive, adhesive, oxidative, corrosive, and fatigue processes. This study underscores the significant influence of mechanical properties on the rate of material degradation due to corrosion, while also highlighting the substantial impact of prevailing electrochemical conditions on the rate of mechanical material removal. This paper offers valuable insights for designers working on load-bearing structures in saline environments.</p></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"6 ","pages":"Article 100074"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294991782400021X/pdfft?md5=844af5c9792935311b11d7341149f4f0&pid=1-s2.0-S294991782400021X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tribo-electrochemical investigation of 60NiTi alloy in saline solution\",\"authors\":\"Anthony Onyebuchi Okoani ,&nbsp;Ashveen Nand ,&nbsp;Maziar Ramezani\",\"doi\":\"10.1016/j.jalmes.2024.100074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research explores the tribocorrosion behaviour of 60NiTi alloy, also known as NiTiNOL60, when exposed to a saline environment. Our investigation focuses on understanding the relationship between corrosion and wear rates and assessing surface damage and material degradation. To conduct our experiments, we employed a linear reciprocating ball-on-plate tribometer coupled with electrochemical polarisation using a three-electrode cell configuration to assess the combined effects of corrosion and sliding wear. Surface characterisation was carried out through scanning electron microscopy and energy dispersion spectroscopy, revealing the material to be a Ni-rich 60NiTi alloy, with surface oxidation evident in the electrolyte medium. Our electrochemical findings indicate the occurrence of localised corrosion in both cathodic and anodic regimes, with corrosion pit nucleation, cavities, and cracks being accelerated by reciprocating sliding and corrosion potential. These interactions exposed the material surface to various wear mechanisms, including abrasive, adhesive, oxidative, corrosive, and fatigue processes. This study underscores the significant influence of mechanical properties on the rate of material degradation due to corrosion, while also highlighting the substantial impact of prevailing electrochemical conditions on the rate of mechanical material removal. This paper offers valuable insights for designers working on load-bearing structures in saline environments.</p></div>\",\"PeriodicalId\":100753,\"journal\":{\"name\":\"Journal of Alloys and Metallurgical Systems\",\"volume\":\"6 \",\"pages\":\"Article 100074\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S294991782400021X/pdfft?md5=844af5c9792935311b11d7341149f4f0&pid=1-s2.0-S294991782400021X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Metallurgical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294991782400021X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294991782400021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了 60NiTi 合金(又称 NiTiNOL60)在盐水环境中的摩擦腐蚀行为。我们的研究重点是了解腐蚀和磨损率之间的关系,并评估表面损伤和材料降解情况。为了进行实验,我们采用了线性往复式球-板摩擦仪,并使用三电极电池配置进行电化学极化,以评估腐蚀和滑动磨损的综合影响。通过扫描电子显微镜和能量色散光谱进行了表面表征,发现材料是富镍的 60NiTi 合金,在电解质介质中表面氧化明显。我们的电化学研究结果表明,在阴极和阳极状态下都会发生局部腐蚀,往复滑动和腐蚀电位会加速腐蚀坑核、空洞和裂纹的形成。这些相互作用使材料表面暴露于各种磨损机制,包括研磨、粘附、氧化、腐蚀和疲劳过程。这项研究强调了机械性能对腐蚀导致的材料降解速度的重要影响,同时也突出了当前电化学条件对机械材料去除速度的重大影响。本文为盐碱环境中承重结构的设计人员提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tribo-electrochemical investigation of 60NiTi alloy in saline solution

This research explores the tribocorrosion behaviour of 60NiTi alloy, also known as NiTiNOL60, when exposed to a saline environment. Our investigation focuses on understanding the relationship between corrosion and wear rates and assessing surface damage and material degradation. To conduct our experiments, we employed a linear reciprocating ball-on-plate tribometer coupled with electrochemical polarisation using a three-electrode cell configuration to assess the combined effects of corrosion and sliding wear. Surface characterisation was carried out through scanning electron microscopy and energy dispersion spectroscopy, revealing the material to be a Ni-rich 60NiTi alloy, with surface oxidation evident in the electrolyte medium. Our electrochemical findings indicate the occurrence of localised corrosion in both cathodic and anodic regimes, with corrosion pit nucleation, cavities, and cracks being accelerated by reciprocating sliding and corrosion potential. These interactions exposed the material surface to various wear mechanisms, including abrasive, adhesive, oxidative, corrosive, and fatigue processes. This study underscores the significant influence of mechanical properties on the rate of material degradation due to corrosion, while also highlighting the substantial impact of prevailing electrochemical conditions on the rate of mechanical material removal. This paper offers valuable insights for designers working on load-bearing structures in saline environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Thermo-microstructural-mechanical modeling of the effect of wire diameters on single-bead Ti-6Al-4V wall deposits by laser wire deposition Influence of heat treatment time on microstructure evolution of austempered nodular cast iron evaluated by image segmentation Mechanical alloying of bronze with aluminum and nickel: Impact on corrosion resistance and hardness Effect of minor addition of silicon on deformation behaviour and texture evolution in CrFeNi medium entropy alloy Microstructural evolution and mechanical properties of Cr–Ni–Mo–V steel with banded structure during tempering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1