医学图像分割的深度学习:最新进展与挑战

Md. Eshmam Rayed , S.M. Sajibul Islam , Sadia Islam Niha , Jamin Rahman Jim , Md Mohsin Kabir , M.F. Mridha
{"title":"医学图像分割的深度学习:最新进展与挑战","authors":"Md. Eshmam Rayed ,&nbsp;S.M. Sajibul Islam ,&nbsp;Sadia Islam Niha ,&nbsp;Jamin Rahman Jim ,&nbsp;Md Mohsin Kabir ,&nbsp;M.F. Mridha","doi":"10.1016/j.imu.2024.101504","DOIUrl":null,"url":null,"abstract":"<div><p>Image segmentation, a crucial process of dividing images into distinct parts or objects, has witnessed remarkable advancements with the emergence of deep learning (DL) techniques. The use of layers in deep neural networks, like object form recognition in higher layers and basic edge identification in lower layers, has markedly improved the quality and accuracy of image segmentation. Consequently, DL using picture segmentation has become commonplace, video analysis, facial recognition, etc. Grasping the applications, algorithms, current performance, and challenges are crucial for advancing DL-based medical image segmentation. However, there is a lack of studies delving into the latest state-of-the-art developments in this field. Therefore, this survey aimed to thoroughly explore the most recent applications of DL-based medical image segmentation, encompassing an in-depth analysis of various commonly used datasets, pre-processing techniques and DL algorithms. This study also investigated the state-of-the-art advancement done in DL-based medical image segmentation by analyzing their results and experimental details. Finally, this study discussed the challenges and future research directions of DL-based medical image segmentation. Overall, this survey provides a comprehensive insight into DL-based medical image segmentation by covering its application domains, model exploration, analysis of state-of-the-art results, challenges, and research directions—a valuable resource for multidisciplinary studies.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"47 ","pages":"Article 101504"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824000601/pdfft?md5=fe81e44fe1f75c7162c9d0f2a8875844&pid=1-s2.0-S2352914824000601-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep learning for medical image segmentation: State-of-the-art advancements and challenges\",\"authors\":\"Md. Eshmam Rayed ,&nbsp;S.M. Sajibul Islam ,&nbsp;Sadia Islam Niha ,&nbsp;Jamin Rahman Jim ,&nbsp;Md Mohsin Kabir ,&nbsp;M.F. Mridha\",\"doi\":\"10.1016/j.imu.2024.101504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Image segmentation, a crucial process of dividing images into distinct parts or objects, has witnessed remarkable advancements with the emergence of deep learning (DL) techniques. The use of layers in deep neural networks, like object form recognition in higher layers and basic edge identification in lower layers, has markedly improved the quality and accuracy of image segmentation. Consequently, DL using picture segmentation has become commonplace, video analysis, facial recognition, etc. Grasping the applications, algorithms, current performance, and challenges are crucial for advancing DL-based medical image segmentation. However, there is a lack of studies delving into the latest state-of-the-art developments in this field. Therefore, this survey aimed to thoroughly explore the most recent applications of DL-based medical image segmentation, encompassing an in-depth analysis of various commonly used datasets, pre-processing techniques and DL algorithms. This study also investigated the state-of-the-art advancement done in DL-based medical image segmentation by analyzing their results and experimental details. Finally, this study discussed the challenges and future research directions of DL-based medical image segmentation. Overall, this survey provides a comprehensive insight into DL-based medical image segmentation by covering its application domains, model exploration, analysis of state-of-the-art results, challenges, and research directions—a valuable resource for multidisciplinary studies.</p></div>\",\"PeriodicalId\":13953,\"journal\":{\"name\":\"Informatics in Medicine Unlocked\",\"volume\":\"47 \",\"pages\":\"Article 101504\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352914824000601/pdfft?md5=fe81e44fe1f75c7162c9d0f2a8875844&pid=1-s2.0-S2352914824000601-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Medicine Unlocked\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352914824000601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824000601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

图像分割是将图像划分为不同部分或对象的重要过程,随着深度学习(DL)技术的出现,图像分割技术取得了显著进步。深度神经网络中各层的使用,如高层的物体形态识别和低层的基本边缘识别,显著提高了图像分割的质量和准确性。因此,使用图片分割的 DL 技术在视频分析、人脸识别等方面已变得非常普遍。掌握应用、算法、当前性能和挑战对于推进基于 DL 的医学图像分割至关重要。然而,目前缺乏对该领域最新进展的深入研究。因此,本调查旨在深入探讨基于 DL 的医学图像分割的最新应用,包括对各种常用数据集、预处理技术和 DL 算法的深入分析。本研究还通过分析其结果和实验细节,研究了基于 DL 的医学图像分割的最新进展。最后,本研究讨论了基于 DL 的医学图像分割所面临的挑战和未来的研究方向。总之,本研究通过对基于 DL 的医学图像分割的应用领域、模型探索、最新成果分析、挑战和研究方向的研究,为多学科研究提供了一个全面的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning for medical image segmentation: State-of-the-art advancements and challenges

Image segmentation, a crucial process of dividing images into distinct parts or objects, has witnessed remarkable advancements with the emergence of deep learning (DL) techniques. The use of layers in deep neural networks, like object form recognition in higher layers and basic edge identification in lower layers, has markedly improved the quality and accuracy of image segmentation. Consequently, DL using picture segmentation has become commonplace, video analysis, facial recognition, etc. Grasping the applications, algorithms, current performance, and challenges are crucial for advancing DL-based medical image segmentation. However, there is a lack of studies delving into the latest state-of-the-art developments in this field. Therefore, this survey aimed to thoroughly explore the most recent applications of DL-based medical image segmentation, encompassing an in-depth analysis of various commonly used datasets, pre-processing techniques and DL algorithms. This study also investigated the state-of-the-art advancement done in DL-based medical image segmentation by analyzing their results and experimental details. Finally, this study discussed the challenges and future research directions of DL-based medical image segmentation. Overall, this survey provides a comprehensive insight into DL-based medical image segmentation by covering its application domains, model exploration, analysis of state-of-the-art results, challenges, and research directions—a valuable resource for multidisciplinary studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
期刊最新文献
Usability and accessibility in mHealth stroke apps: An empirical assessment Spatiotemporal chest wall movement analysis using depth sensor imaging for detecting respiratory asynchrony Regression and classification of Windkessel parameters from non-invasive cardiovascular quantities using a fully connected neural network Patient2Trial: From patient to participant in clinical trials using large language models Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1