用于抑制箱梁涡激振动的主动喷流的实验和耦合模型研究

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL Journal of Fluids and Structures Pub Date : 2024-04-26 DOI:10.1016/j.jfluidstructs.2024.104119
Guanbin Chen , Wen-Li Chen , Changlong Chen , Donglai Gao , Hao Meng , Kyung Chun Kim
{"title":"用于抑制箱梁涡激振动的主动喷流的实验和耦合模型研究","authors":"Guanbin Chen ,&nbsp;Wen-Li Chen ,&nbsp;Changlong Chen ,&nbsp;Donglai Gao ,&nbsp;Hao Meng ,&nbsp;Kyung Chun Kim","doi":"10.1016/j.jfluidstructs.2024.104119","DOIUrl":null,"url":null,"abstract":"<div><p>Owing to the availability of the jet flow control strategy in mitigating strongly alternating vortex motion and shedding in the wake flow structure, an active jet produced by an air velocity regulator installed on a box girder is proposed to alleviate the fluctuating aerodynamic force imposing on a fixed box main girder model. The pressure distributions on the top and bottom surfaces of the deck's two sections were recorded using a digital miniature pressure scanner system. The investigation manifests that the fluctuation of the outer surface pressure (OSP) distribution of the deck is alleviated, and the mean value is stable in all test cases. Wavelet coherence analysis of the OSP between two sections on the deck was performed to determine the relationship between the surface pressures varying with frequency over time. Based on the OSP distribution, the aerodynamic force was obtained to macroscopically display the availability of the active jet. Moreover, an active jet was applied to a free-vibrating box girder model to study its ability in suppressing vortex-induced vibration (VIV). The results of the oscillation response obtained by a laser displacement apparatus show that the box girder with the active jet has a lower vibration amplitude, and the VIV can be entirely suppressed when the non-dimensional jet momentum coefficient reaches a certain value. In addition, a coupled model of VIV was developed to predict the vibration response of the deck. The calculated results of the vibration response of the deck obtained by the coupled model are close to those of the experiments.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and coupled model investigation of an active jet for suppressing vortex-induced vibration of a box girder\",\"authors\":\"Guanbin Chen ,&nbsp;Wen-Li Chen ,&nbsp;Changlong Chen ,&nbsp;Donglai Gao ,&nbsp;Hao Meng ,&nbsp;Kyung Chun Kim\",\"doi\":\"10.1016/j.jfluidstructs.2024.104119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Owing to the availability of the jet flow control strategy in mitigating strongly alternating vortex motion and shedding in the wake flow structure, an active jet produced by an air velocity regulator installed on a box girder is proposed to alleviate the fluctuating aerodynamic force imposing on a fixed box main girder model. The pressure distributions on the top and bottom surfaces of the deck's two sections were recorded using a digital miniature pressure scanner system. The investigation manifests that the fluctuation of the outer surface pressure (OSP) distribution of the deck is alleviated, and the mean value is stable in all test cases. Wavelet coherence analysis of the OSP between two sections on the deck was performed to determine the relationship between the surface pressures varying with frequency over time. Based on the OSP distribution, the aerodynamic force was obtained to macroscopically display the availability of the active jet. Moreover, an active jet was applied to a free-vibrating box girder model to study its ability in suppressing vortex-induced vibration (VIV). The results of the oscillation response obtained by a laser displacement apparatus show that the box girder with the active jet has a lower vibration amplitude, and the VIV can be entirely suppressed when the non-dimensional jet momentum coefficient reaches a certain value. In addition, a coupled model of VIV was developed to predict the vibration response of the deck. The calculated results of the vibration response of the deck obtained by the coupled model are close to those of the experiments.</p></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624000549\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000549","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于喷流控制策略可减轻尾流结构中强烈交替的涡流运动和脱落,因此提出了一种由安装在箱形梁上的空气速度调节器产生的主动喷流,以减轻施加在固定箱形主梁模型上的波动空气动力。使用数字微型压力扫描系统记录了甲板两部分上下表面的压力分布。研究结果表明,甲板外表面压力(OSP)分布的波动得到了缓解,并且在所有测试情况下平均值都很稳定。对甲板上两个部分之间的外表面压力进行了小波相干分析,以确定表面压力随时间变化的频率之间的关系。根据 OSP 分布,获得了空气动力,以宏观显示主动喷流的可用性。此外,还将主动射流应用于自由振动箱梁模型,研究其抑制涡流诱导振动(VIV)的能力。激光位移仪获得的振荡响应结果表明,采用主动射流的箱梁振幅较小,当非线性射流动量系数达到一定值时,VIV 可被完全抑制。此外,还建立了一个 VIV 耦合模型来预测桥面的振动响应。耦合模型得到的甲板振动响应计算结果与实验结果接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and coupled model investigation of an active jet for suppressing vortex-induced vibration of a box girder

Owing to the availability of the jet flow control strategy in mitigating strongly alternating vortex motion and shedding in the wake flow structure, an active jet produced by an air velocity regulator installed on a box girder is proposed to alleviate the fluctuating aerodynamic force imposing on a fixed box main girder model. The pressure distributions on the top and bottom surfaces of the deck's two sections were recorded using a digital miniature pressure scanner system. The investigation manifests that the fluctuation of the outer surface pressure (OSP) distribution of the deck is alleviated, and the mean value is stable in all test cases. Wavelet coherence analysis of the OSP between two sections on the deck was performed to determine the relationship between the surface pressures varying with frequency over time. Based on the OSP distribution, the aerodynamic force was obtained to macroscopically display the availability of the active jet. Moreover, an active jet was applied to a free-vibrating box girder model to study its ability in suppressing vortex-induced vibration (VIV). The results of the oscillation response obtained by a laser displacement apparatus show that the box girder with the active jet has a lower vibration amplitude, and the VIV can be entirely suppressed when the non-dimensional jet momentum coefficient reaches a certain value. In addition, a coupled model of VIV was developed to predict the vibration response of the deck. The calculated results of the vibration response of the deck obtained by the coupled model are close to those of the experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
期刊最新文献
A new approach for spatio-temporal interface treatment in fluid–solid interaction using artificial neural networks employing coupled partitioned fluid–solid solvers Condensation solution method for fluid-structure interaction dynamic models of structural system Turbulence-induced vibration in annular flow of a rigid cylinder mounted on a cantilever beam Recurrent graph convolutional multi-mesh autoencoder for unsteady transonic aerodynamics On the characteristics of fluid flow field and oscillatory response of tuned liquid multi-column dampers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1