基于染色质状态预测细胞类型特异性凝聚素介导的染色质环路

IF 4.2 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Methods Pub Date : 2024-04-24 DOI:10.1016/j.ymeth.2024.04.014
Li Liu , Ranran Jia , Rui Hou , Chengbing Huang
{"title":"基于染色质状态预测细胞类型特异性凝聚素介导的染色质环路","authors":"Li Liu ,&nbsp;Ranran Jia ,&nbsp;Rui Hou ,&nbsp;Chengbing Huang","doi":"10.1016/j.ymeth.2024.04.014","DOIUrl":null,"url":null,"abstract":"<div><p>Chromatin loop is of crucial importance for the regulation of gene transcription. Cohesin is a type of chromatin-associated protein that mediates the interaction of chromatin through the loop extrusion. Cohesin-mediated chromatin interactions have strong cell-type specificity, posing a challenge for predicting chromatin loops. Existing computational methods perform poorly in predicting cell-type-specific chromatin loops. To address this issue, we propose a random forest model to predict cell-type-specific cohesin-mediated chromatin loops based on chromatin states identified by ChromHMM and the occupancy of related factors. Our results show that chromatin state is responsible for cell-type-specificity of loops. Using only chromatin states as features, the model achieved high accuracy in predicting cell-type-specific loops between two cell types and can be applied to different cell types. Furthermore, when chromatin states are combined with the occurrence frequency of CTCF, RAD21, YY1, and H3K27ac ChIP-seq peaks, more accurate prediction can be achieved. Our feature extraction method provides novel insights into predicting cell-type-specific chromatin loops and reveals the relationship between chromatin state and chromatin loop formation.</p></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"226 ","pages":"Pages 151-160"},"PeriodicalIF":4.2000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of cell-type-specific cohesin-mediated chromatin loops based on chromatin state\",\"authors\":\"Li Liu ,&nbsp;Ranran Jia ,&nbsp;Rui Hou ,&nbsp;Chengbing Huang\",\"doi\":\"10.1016/j.ymeth.2024.04.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chromatin loop is of crucial importance for the regulation of gene transcription. Cohesin is a type of chromatin-associated protein that mediates the interaction of chromatin through the loop extrusion. Cohesin-mediated chromatin interactions have strong cell-type specificity, posing a challenge for predicting chromatin loops. Existing computational methods perform poorly in predicting cell-type-specific chromatin loops. To address this issue, we propose a random forest model to predict cell-type-specific cohesin-mediated chromatin loops based on chromatin states identified by ChromHMM and the occupancy of related factors. Our results show that chromatin state is responsible for cell-type-specificity of loops. Using only chromatin states as features, the model achieved high accuracy in predicting cell-type-specific loops between two cell types and can be applied to different cell types. Furthermore, when chromatin states are combined with the occurrence frequency of CTCF, RAD21, YY1, and H3K27ac ChIP-seq peaks, more accurate prediction can be achieved. Our feature extraction method provides novel insights into predicting cell-type-specific chromatin loops and reveals the relationship between chromatin state and chromatin loop formation.</p></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"226 \",\"pages\":\"Pages 151-160\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S104620232400104X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104620232400104X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

染色质环对基因转录的调控至关重要。Cohesin是一种染色质相关蛋白,通过环挤压介导染色质相互作用。凝聚素介导的染色质相互作用具有很强的细胞类型特异性,这给染色质环的预测带来了挑战。现有的计算方法在预测细胞类型特异性染色质环方面表现不佳。为了解决这个问题,我们提出了一种随机森林模型,根据 ChromHMM 确定的染色质状态和相关因子的占据情况预测细胞类型特异性的凝聚素介导的染色质环。我们的结果表明,染色质状态是细胞类型特异性染色质环的原因。仅使用染色质状态作为特征,该模型在预测两种细胞类型之间的细胞特异性环路方面达到了很高的准确度,并可应用于不同的细胞类型。此外,当染色质状态与CTCF、RAD21、YY1和H3K27ac ChIP-seq峰的出现频率相结合时,可以实现更准确的预测。我们的特征提取方法为预测细胞类型特异性染色质环提供了新的见解,并揭示了染色质状态与染色质环形成之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of cell-type-specific cohesin-mediated chromatin loops based on chromatin state

Chromatin loop is of crucial importance for the regulation of gene transcription. Cohesin is a type of chromatin-associated protein that mediates the interaction of chromatin through the loop extrusion. Cohesin-mediated chromatin interactions have strong cell-type specificity, posing a challenge for predicting chromatin loops. Existing computational methods perform poorly in predicting cell-type-specific chromatin loops. To address this issue, we propose a random forest model to predict cell-type-specific cohesin-mediated chromatin loops based on chromatin states identified by ChromHMM and the occupancy of related factors. Our results show that chromatin state is responsible for cell-type-specificity of loops. Using only chromatin states as features, the model achieved high accuracy in predicting cell-type-specific loops between two cell types and can be applied to different cell types. Furthermore, when chromatin states are combined with the occurrence frequency of CTCF, RAD21, YY1, and H3K27ac ChIP-seq peaks, more accurate prediction can be achieved. Our feature extraction method provides novel insights into predicting cell-type-specific chromatin loops and reveals the relationship between chromatin state and chromatin loop formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods
Methods 生物-生化研究方法
CiteScore
9.80
自引率
2.10%
发文量
222
审稿时长
11.3 weeks
期刊介绍: Methods focuses on rapidly developing techniques in the experimental biological and medical sciences. Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.
期刊最新文献
A roadmap to cysteine specific labeling of membrane proteins for single-molecule photobleaching studies. In silico identification of Histone Deacetylase inhibitors using Streamlined Masked Transformer-based Pretrained features. Robust feature learning using contractive autoencoders for multi-omics clustering in cancer subtyping Optimizing Retinal Imaging: Evaluation of ultrasmall TiO2 nanoparticle- fluorescein conjugates for improved Fundus Fluorescein Angiography Ab-Amy 2.0: Predicting light chain amyloidogenic risk of therapeutic antibodies based on antibody language model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1