在大规模公开挑战赛中评估手势生成:2022 年 GENEA 挑战赛

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Graphics Pub Date : 2024-04-27 DOI:10.1145/3656374
Taras Kucherenko, Pieter Wolfert, Youngwoo Yoon, Carla Viegas, Teodor Nikolov, Mihail Tsakov, Gustav Eje Henter
{"title":"在大规模公开挑战赛中评估手势生成:2022 年 GENEA 挑战赛","authors":"Taras Kucherenko, Pieter Wolfert, Youngwoo Yoon, Carla Viegas, Teodor Nikolov, Mihail Tsakov, Gustav Eje Henter","doi":"10.1145/3656374","DOIUrl":null,"url":null,"abstract":"<p>This paper reports on the second GENEA Challenge to benchmark data-driven automatic co-speech gesture generation. Participating teams used the same speech and motion dataset to build gesture-generation systems. Motion generated by all these systems was rendered to video using a standardised visualisation pipeline and evaluated in several large, crowdsourced user studies. Unlike when comparing different research papers, differences in results are here only due to differences between methods, enabling direct comparison between systems. The dataset was based on 18 hours of full-body motion capture, including fingers, of different persons engaging in a dyadic conversation. Ten teams participated in the challenge across two tiers: full-body and upper-body gesticulation. For each tier, we evaluated both the human-likeness of the gesture motion and its appropriateness for the specific speech signal. Our evaluations decouple human-likeness from gesture appropriateness, which has been a difficult problem in the field. </p><p>The evaluation results show some synthetic gesture conditions being rated as significantly more human-like than 3D human motion capture. To the best of our knowledge, this has not been demonstrated before. On the other hand, all synthetic motion is found to be vastly less appropriate for the speech than the original motion-capture recordings. We also find that conventional objective metrics do not correlate well with subjective human-likeness ratings in this large evaluation. The one exception is the Fréchet gesture distance (FGD), which achieves a Kendall’s tau rank correlation of around \\(-0.5\\). Based on the challenge results we formulate numerous recommendations for system building and evaluation.</p>","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"9 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating gesture generation in a large-scale open challenge: The GENEA Challenge 2022\",\"authors\":\"Taras Kucherenko, Pieter Wolfert, Youngwoo Yoon, Carla Viegas, Teodor Nikolov, Mihail Tsakov, Gustav Eje Henter\",\"doi\":\"10.1145/3656374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper reports on the second GENEA Challenge to benchmark data-driven automatic co-speech gesture generation. Participating teams used the same speech and motion dataset to build gesture-generation systems. Motion generated by all these systems was rendered to video using a standardised visualisation pipeline and evaluated in several large, crowdsourced user studies. Unlike when comparing different research papers, differences in results are here only due to differences between methods, enabling direct comparison between systems. The dataset was based on 18 hours of full-body motion capture, including fingers, of different persons engaging in a dyadic conversation. Ten teams participated in the challenge across two tiers: full-body and upper-body gesticulation. For each tier, we evaluated both the human-likeness of the gesture motion and its appropriateness for the specific speech signal. Our evaluations decouple human-likeness from gesture appropriateness, which has been a difficult problem in the field. </p><p>The evaluation results show some synthetic gesture conditions being rated as significantly more human-like than 3D human motion capture. To the best of our knowledge, this has not been demonstrated before. On the other hand, all synthetic motion is found to be vastly less appropriate for the speech than the original motion-capture recordings. We also find that conventional objective metrics do not correlate well with subjective human-likeness ratings in this large evaluation. The one exception is the Fréchet gesture distance (FGD), which achieves a Kendall’s tau rank correlation of around \\\\(-0.5\\\\). Based on the challenge results we formulate numerous recommendations for system building and evaluation.</p>\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3656374\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3656374","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文报告了第二届 GENEA 挑战赛的情况,该挑战赛旨在对数据驱动的自动协同语音手势生成进行基准测试。参赛团队使用相同的语音和动作数据集构建手势生成系统。所有这些系统生成的动作都使用标准化的可视化管道渲染成视频,并在几个大型的众包用户研究中进行评估。与比较不同的研究论文不同,这里的结果差异只是由于方法的不同,因此可以直接比较不同的系统。数据集基于 18 个小时的全身动作捕捉,包括手指,捕捉的对象是正在进行二人对话的不同人。十支团队参加了两个级别的挑战赛:全身和上半身手势。对于每个级别,我们既要评估手势动作与人类的相似性,又要评估其是否适合特定的语音信号。我们的评估将与人类的相似性和手势的适当性分离开来,这一直是该领域的一个难题。评估结果表明,某些合成手势比三维人体动作捕捉更像人。据我们所知,这种情况以前从未出现过。另一方面,我们发现所有的合成动作都远不如原始动作捕捉记录更适合语音。我们还发现,在这次大规模的评估中,传统的客观指标与主观的人类相似度评级并没有很好的相关性。唯一的例外是弗雷谢特手势距离(FGD),它的 Kendall's tau 等级相关性约为\(-0.5\)。基于挑战结果,我们为系统建设和评估提出了许多建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating gesture generation in a large-scale open challenge: The GENEA Challenge 2022

This paper reports on the second GENEA Challenge to benchmark data-driven automatic co-speech gesture generation. Participating teams used the same speech and motion dataset to build gesture-generation systems. Motion generated by all these systems was rendered to video using a standardised visualisation pipeline and evaluated in several large, crowdsourced user studies. Unlike when comparing different research papers, differences in results are here only due to differences between methods, enabling direct comparison between systems. The dataset was based on 18 hours of full-body motion capture, including fingers, of different persons engaging in a dyadic conversation. Ten teams participated in the challenge across two tiers: full-body and upper-body gesticulation. For each tier, we evaluated both the human-likeness of the gesture motion and its appropriateness for the specific speech signal. Our evaluations decouple human-likeness from gesture appropriateness, which has been a difficult problem in the field.

The evaluation results show some synthetic gesture conditions being rated as significantly more human-like than 3D human motion capture. To the best of our knowledge, this has not been demonstrated before. On the other hand, all synthetic motion is found to be vastly less appropriate for the speech than the original motion-capture recordings. We also find that conventional objective metrics do not correlate well with subjective human-likeness ratings in this large evaluation. The one exception is the Fréchet gesture distance (FGD), which achieves a Kendall’s tau rank correlation of around \(-0.5\). Based on the challenge results we formulate numerous recommendations for system building and evaluation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
期刊最新文献
Encoded Marker Clusters for Auto-Labeling in Optical Motion Capture Direct Rendering of Intrinsic Triangulations Texture Size Reduction Through Symmetric Overlap and Texture Carving Don't Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive Media Implicit Bonded Discrete Element Method with Manifold Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1