Semih Kurt, Mandi Chen, Hosein Toosi, Xinsong Chen, Camilla Engblom, Jeff Mold, Johan Hartman, Jens Lagergren
{"title":"CopyVAE:基于变异自动编码器的单细胞转录组学拷贝数变异推断方法","authors":"Semih Kurt, Mandi Chen, Hosein Toosi, Xinsong Chen, Camilla Engblom, Jeff Mold, Johan Hartman, Jens Lagergren","doi":"10.1093/bioinformatics/btae284","DOIUrl":null,"url":null,"abstract":"\n \n \n Copy number variations (CNVs) are common genetic alterations in tumour cells. The delineation of CNVs holds promise for enhancing our comprehension of cancer progression. Moreover, accurate inference of CNVs from single-cell sequencing data is essential for unravelling intratumoral heterogeneity. However, existing inference methods face limitations in resolution and sensitivity.\n \n \n \n To address these challenges, we present CopyVAE, a deep learning framework based on a variational autoencoder architecture. Through experiments, we demonstrated that CopyVAE can accurately and reliably detect copy number variations (CNVs) from data obtained using single-cell RNA sequencing. CopyVAE surpasses existing methods in terms of sensitivity and specificity. We also discussed CopyVAE’s potential to advance our understanding of genetic alterations and their impact on disease advancement.\n \n \n \n CopyVAE is implemented and freely available under MIT license at https://github.com/kurtsemih/copyVAE\n \n \n \n Supplementary data are available at Bioinformatics online.\n","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CopyVAE: a variational autoencoder-based approach for copy number variation inference using single-cell transcriptomics\",\"authors\":\"Semih Kurt, Mandi Chen, Hosein Toosi, Xinsong Chen, Camilla Engblom, Jeff Mold, Johan Hartman, Jens Lagergren\",\"doi\":\"10.1093/bioinformatics/btae284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n Copy number variations (CNVs) are common genetic alterations in tumour cells. The delineation of CNVs holds promise for enhancing our comprehension of cancer progression. Moreover, accurate inference of CNVs from single-cell sequencing data is essential for unravelling intratumoral heterogeneity. However, existing inference methods face limitations in resolution and sensitivity.\\n \\n \\n \\n To address these challenges, we present CopyVAE, a deep learning framework based on a variational autoencoder architecture. Through experiments, we demonstrated that CopyVAE can accurately and reliably detect copy number variations (CNVs) from data obtained using single-cell RNA sequencing. CopyVAE surpasses existing methods in terms of sensitivity and specificity. We also discussed CopyVAE’s potential to advance our understanding of genetic alterations and their impact on disease advancement.\\n \\n \\n \\n CopyVAE is implemented and freely available under MIT license at https://github.com/kurtsemih/copyVAE\\n \\n \\n \\n Supplementary data are available at Bioinformatics online.\\n\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae284\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae284","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
CopyVAE: a variational autoencoder-based approach for copy number variation inference using single-cell transcriptomics
Copy number variations (CNVs) are common genetic alterations in tumour cells. The delineation of CNVs holds promise for enhancing our comprehension of cancer progression. Moreover, accurate inference of CNVs from single-cell sequencing data is essential for unravelling intratumoral heterogeneity. However, existing inference methods face limitations in resolution and sensitivity.
To address these challenges, we present CopyVAE, a deep learning framework based on a variational autoencoder architecture. Through experiments, we demonstrated that CopyVAE can accurately and reliably detect copy number variations (CNVs) from data obtained using single-cell RNA sequencing. CopyVAE surpasses existing methods in terms of sensitivity and specificity. We also discussed CopyVAE’s potential to advance our understanding of genetic alterations and their impact on disease advancement.
CopyVAE is implemented and freely available under MIT license at https://github.com/kurtsemih/copyVAE
Supplementary data are available at Bioinformatics online.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.