CopyVAE:基于变异自动编码器的单细胞转录组学拷贝数变异推断方法

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Bioinformatics Pub Date : 2024-04-27 DOI:10.1093/bioinformatics/btae284
Semih Kurt, Mandi Chen, Hosein Toosi, Xinsong Chen, Camilla Engblom, Jeff Mold, Johan Hartman, Jens Lagergren
{"title":"CopyVAE:基于变异自动编码器的单细胞转录组学拷贝数变异推断方法","authors":"Semih Kurt, Mandi Chen, Hosein Toosi, Xinsong Chen, Camilla Engblom, Jeff Mold, Johan Hartman, Jens Lagergren","doi":"10.1093/bioinformatics/btae284","DOIUrl":null,"url":null,"abstract":"\n \n \n Copy number variations (CNVs) are common genetic alterations in tumour cells. The delineation of CNVs holds promise for enhancing our comprehension of cancer progression. Moreover, accurate inference of CNVs from single-cell sequencing data is essential for unravelling intratumoral heterogeneity. However, existing inference methods face limitations in resolution and sensitivity.\n \n \n \n To address these challenges, we present CopyVAE, a deep learning framework based on a variational autoencoder architecture. Through experiments, we demonstrated that CopyVAE can accurately and reliably detect copy number variations (CNVs) from data obtained using single-cell RNA sequencing. CopyVAE surpasses existing methods in terms of sensitivity and specificity. We also discussed CopyVAE’s potential to advance our understanding of genetic alterations and their impact on disease advancement.\n \n \n \n CopyVAE is implemented and freely available under MIT license at https://github.com/kurtsemih/copyVAE\n \n \n \n Supplementary data are available at Bioinformatics online.\n","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CopyVAE: a variational autoencoder-based approach for copy number variation inference using single-cell transcriptomics\",\"authors\":\"Semih Kurt, Mandi Chen, Hosein Toosi, Xinsong Chen, Camilla Engblom, Jeff Mold, Johan Hartman, Jens Lagergren\",\"doi\":\"10.1093/bioinformatics/btae284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n Copy number variations (CNVs) are common genetic alterations in tumour cells. The delineation of CNVs holds promise for enhancing our comprehension of cancer progression. Moreover, accurate inference of CNVs from single-cell sequencing data is essential for unravelling intratumoral heterogeneity. However, existing inference methods face limitations in resolution and sensitivity.\\n \\n \\n \\n To address these challenges, we present CopyVAE, a deep learning framework based on a variational autoencoder architecture. Through experiments, we demonstrated that CopyVAE can accurately and reliably detect copy number variations (CNVs) from data obtained using single-cell RNA sequencing. CopyVAE surpasses existing methods in terms of sensitivity and specificity. We also discussed CopyVAE’s potential to advance our understanding of genetic alterations and their impact on disease advancement.\\n \\n \\n \\n CopyVAE is implemented and freely available under MIT license at https://github.com/kurtsemih/copyVAE\\n \\n \\n \\n Supplementary data are available at Bioinformatics online.\\n\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae284\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae284","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

拷贝数变异(CNV)是肿瘤细胞中常见的基因改变。描述 CNVs 有助于加深我们对癌症进展的理解。此外,从单细胞测序数据中准确推断 CNV 对于揭示瘤内异质性至关重要。然而,现有的推断方法在分辨率和灵敏度方面存在局限性。 为了应对这些挑战,我们提出了基于变异自动编码器架构的深度学习框架 CopyVAE。通过实验,我们证明 CopyVAE 可以从单细胞 RNA 测序获得的数据中准确可靠地检测拷贝数变异(CNV)。在灵敏度和特异性方面,CopyVAE 超越了现有方法。我们还讨论了 CopyVAE 在推动我们了解基因改变及其对疾病发展的影响方面的潜力。 CopyVAE 在 MIT 许可下实现并免费提供,网址是 https://github.com/kurtsemih/copyVAE 补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CopyVAE: a variational autoencoder-based approach for copy number variation inference using single-cell transcriptomics
Copy number variations (CNVs) are common genetic alterations in tumour cells. The delineation of CNVs holds promise for enhancing our comprehension of cancer progression. Moreover, accurate inference of CNVs from single-cell sequencing data is essential for unravelling intratumoral heterogeneity. However, existing inference methods face limitations in resolution and sensitivity. To address these challenges, we present CopyVAE, a deep learning framework based on a variational autoencoder architecture. Through experiments, we demonstrated that CopyVAE can accurately and reliably detect copy number variations (CNVs) from data obtained using single-cell RNA sequencing. CopyVAE surpasses existing methods in terms of sensitivity and specificity. We also discussed CopyVAE’s potential to advance our understanding of genetic alterations and their impact on disease advancement. CopyVAE is implemented and freely available under MIT license at https://github.com/kurtsemih/copyVAE Supplementary data are available at Bioinformatics online.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
期刊最新文献
MEHunter: Transformer-based mobile element variant detection from long reads PQSDC: a parallel lossless compressor for quality scores data via sequences partition and Run-Length prediction mapping. MUSE-XAE: MUtational Signature Extraction with eXplainable AutoEncoder enhances tumour types classification. CopyVAE: a variational autoencoder-based approach for copy number variation inference using single-cell transcriptomics CORDAX web server: An online platform for the prediction and 3D visualization of aggregation motifs in protein sequences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1