通过交叉印刷路线减少熔融长丝制造复合材料的珠间空隙

Valentin Marchal, Yicha Zhang, Rémy Lachat, N. Labed, François Peyraut
{"title":"通过交叉印刷路线减少熔融长丝制造复合材料的珠间空隙","authors":"Valentin Marchal, Yicha Zhang, Rémy Lachat, N. Labed, François Peyraut","doi":"10.1108/rpj-02-2024-0077","DOIUrl":null,"url":null,"abstract":"Purpose\nThe use of continuous fiber-reinforced filaments improves the mechanical properties obtained with the fused filament fabrication (FFF) process. Yet, there is a lack of simulation tailored tools to assist in the design for additive manufacturing of continuous fiber composites. To build such models, a precise elastic model is required. As the porosity caused by interbead voids remains an important flaw of the process, this paper aims to build an elastic model integrating this aspect.\n\nDesign/methodology/approach\nTo study the amount of porosity, which could be a failure initiator, this study proposes a two step periodic homogenization method. The first step concerns the microscopic scale with a unit cell made of fiber and matrix. The second step is at the mesoscopic scale and combines the elastic material of the first step with the interbead voids. The void content has been set as a parameter of the model. The material models predicted with the periodic homogenization were compared with experimental results.\n\nFindings\nThe comparison between periodic homogenization results and tensile test results shows a fair agreement between the experimental results and that of the numerical simulation, whatever the fibers’ orientations are. Moreover, a void content reduction has been observed by increasing the crossing angle from one layer to another. An empiric law giving the porosity according to this crossing angle was created. The model and the law can be further used for design evaluation and optimization of continuous fiber-reinforced FFF.\n\nOriginality/value\nA new elastic model considering interbead voids and its variation with the crossing angle of the fibers has been built. It can be used in simulation tools to design high performance fused filament fabricated composite parts.\n","PeriodicalId":509442,"journal":{"name":"Rapid Prototyping Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inter-bead void reduction by crossing printing routes of fused filament fabricated composites\",\"authors\":\"Valentin Marchal, Yicha Zhang, Rémy Lachat, N. Labed, François Peyraut\",\"doi\":\"10.1108/rpj-02-2024-0077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose\\nThe use of continuous fiber-reinforced filaments improves the mechanical properties obtained with the fused filament fabrication (FFF) process. Yet, there is a lack of simulation tailored tools to assist in the design for additive manufacturing of continuous fiber composites. To build such models, a precise elastic model is required. As the porosity caused by interbead voids remains an important flaw of the process, this paper aims to build an elastic model integrating this aspect.\\n\\nDesign/methodology/approach\\nTo study the amount of porosity, which could be a failure initiator, this study proposes a two step periodic homogenization method. The first step concerns the microscopic scale with a unit cell made of fiber and matrix. The second step is at the mesoscopic scale and combines the elastic material of the first step with the interbead voids. The void content has been set as a parameter of the model. The material models predicted with the periodic homogenization were compared with experimental results.\\n\\nFindings\\nThe comparison between periodic homogenization results and tensile test results shows a fair agreement between the experimental results and that of the numerical simulation, whatever the fibers’ orientations are. Moreover, a void content reduction has been observed by increasing the crossing angle from one layer to another. An empiric law giving the porosity according to this crossing angle was created. The model and the law can be further used for design evaluation and optimization of continuous fiber-reinforced FFF.\\n\\nOriginality/value\\nA new elastic model considering interbead voids and its variation with the crossing angle of the fibers has been built. It can be used in simulation tools to design high performance fused filament fabricated composite parts.\\n\",\"PeriodicalId\":509442,\"journal\":{\"name\":\"Rapid Prototyping Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Prototyping Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/rpj-02-2024-0077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/rpj-02-2024-0077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的使用连续纤维增强丝可以提高熔融长丝制造(FFF)工艺获得的机械性能。然而,目前还缺乏量身定制的模拟工具来帮助设计连续纤维复合材料的增材制造。要建立这样的模型,需要一个精确的弹性模型。设计/方法/途径为了研究可能成为失效诱因的孔隙率,本研究提出了两步周期性均质化方法。第一步涉及微观尺度,由纤维和基体组成一个单元。第二步为中观尺度,将第一步中的弹性材料与珠间空隙结合起来。空隙含量被设定为模型的一个参数。研究结果周期均质化结果与拉伸试验结果的对比表明,无论纤维的取向如何,试验结果与数值模拟结果都相当吻合。此外,通过增加一层与另一层之间的交叉角,还观察到了空隙含量的减少。根据这一交叉角,我们创建了一个经验法则,给出了孔隙率。该模型和定律可进一步用于连续纤维增强 FFF 的设计评估和优化。该模型可用于设计高性能熔丝制造复合材料部件的模拟工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inter-bead void reduction by crossing printing routes of fused filament fabricated composites
Purpose The use of continuous fiber-reinforced filaments improves the mechanical properties obtained with the fused filament fabrication (FFF) process. Yet, there is a lack of simulation tailored tools to assist in the design for additive manufacturing of continuous fiber composites. To build such models, a precise elastic model is required. As the porosity caused by interbead voids remains an important flaw of the process, this paper aims to build an elastic model integrating this aspect. Design/methodology/approach To study the amount of porosity, which could be a failure initiator, this study proposes a two step periodic homogenization method. The first step concerns the microscopic scale with a unit cell made of fiber and matrix. The second step is at the mesoscopic scale and combines the elastic material of the first step with the interbead voids. The void content has been set as a parameter of the model. The material models predicted with the periodic homogenization were compared with experimental results. Findings The comparison between periodic homogenization results and tensile test results shows a fair agreement between the experimental results and that of the numerical simulation, whatever the fibers’ orientations are. Moreover, a void content reduction has been observed by increasing the crossing angle from one layer to another. An empiric law giving the porosity according to this crossing angle was created. The model and the law can be further used for design evaluation and optimization of continuous fiber-reinforced FFF. Originality/value A new elastic model considering interbead voids and its variation with the crossing angle of the fibers has been built. It can be used in simulation tools to design high performance fused filament fabricated composite parts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme roughness reduction and ultrafine quality of innovative dual function material extrusion 3D printer Design for additive manufacturing of topology-optimized structures based on deep learning and transfer learning Sintering parameter optimization by inverse analysis in direct metal deposition of Inconel 718 Temperature and strain rate-dependent compression properties of 3D-printed PLA: an experimental and modeling analysis Mapping and prospective of additive manufacturing in the context of Industry 4.0 and 5.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1