{"title":"再结晶程度对超级铁素体不锈钢 S44660 被动膜性能的影响","authors":"Bin Wang, Yugui Li, Huaying Li, Guanghui Zhao, Yaohui Song, Hui Xu","doi":"10.1515/corrrev-2023-0069","DOIUrl":null,"url":null,"abstract":"\n The effect of the recrystallization degree on the properties of passive films formed in 0.1 M HNO3 solution for super ferritic stainless steel S44660 was examined in this study. The initial specimens, in their cold-rolled state, showed a high dislocation density, as observed through electron backscatter diffraction (EBSD) experiments. Analysis of potentiodynamic polarization (PDP) curves and electrochemical impedance spectroscopy (EIS) measurements suggested that with the increase of recrystallization degree, the corrosion current density reduced and the corrosion potential increased. As revealed by Mott–Schottky analysis, the passive film showed a dual structure of n-type and p-type semiconductors, with the carrier density of the passive film decreasing as the recrystallization degree increased. X-ray photoelectron spectroscopy (XPS) provided insights into the film composition, indicating that the Fe2O3 and Cr2O3 content, which improved the stability of the passive film, increased with the degree of recrystallization. In summary, the increase in recrystallization degree reduced the number of defects in the microstructure, thereby creating favorable conditions for the formation of highly protective passive films. The passive film formed after complete recrystallization exhibited enhanced corrosion resistance.","PeriodicalId":10721,"journal":{"name":"Corrosion Reviews","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of recrystallization degree on properties of passive film of super ferritic stainless steel S44660\",\"authors\":\"Bin Wang, Yugui Li, Huaying Li, Guanghui Zhao, Yaohui Song, Hui Xu\",\"doi\":\"10.1515/corrrev-2023-0069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The effect of the recrystallization degree on the properties of passive films formed in 0.1 M HNO3 solution for super ferritic stainless steel S44660 was examined in this study. The initial specimens, in their cold-rolled state, showed a high dislocation density, as observed through electron backscatter diffraction (EBSD) experiments. Analysis of potentiodynamic polarization (PDP) curves and electrochemical impedance spectroscopy (EIS) measurements suggested that with the increase of recrystallization degree, the corrosion current density reduced and the corrosion potential increased. As revealed by Mott–Schottky analysis, the passive film showed a dual structure of n-type and p-type semiconductors, with the carrier density of the passive film decreasing as the recrystallization degree increased. X-ray photoelectron spectroscopy (XPS) provided insights into the film composition, indicating that the Fe2O3 and Cr2O3 content, which improved the stability of the passive film, increased with the degree of recrystallization. In summary, the increase in recrystallization degree reduced the number of defects in the microstructure, thereby creating favorable conditions for the formation of highly protective passive films. The passive film formed after complete recrystallization exhibited enhanced corrosion resistance.\",\"PeriodicalId\":10721,\"journal\":{\"name\":\"Corrosion Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/corrrev-2023-0069\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/corrrev-2023-0069","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
本研究考察了再结晶程度对超级铁素体不锈钢 S44660 在 0.1 M HNO3 溶液中形成的被动薄膜性能的影响。通过电子反向散射衍射(EBSD)实验观察到,冷轧状态下的初始试样显示出较高的位错密度。电位极化(PDP)曲线和电化学阻抗谱(EIS)测量分析表明,随着再结晶程度的增加,腐蚀电流密度降低,腐蚀电位升高。莫特-肖特基分析显示,被动膜呈现出 n 型和 p 型半导体的双重结构,被动膜的载流子密度随着再结晶度的增加而降低。X 射线光电子能谱 (XPS) 揭示了薄膜的组成,表明随着再结晶程度的增加,提高无源薄膜稳定性的 Fe2O3 和 Cr2O3 含量也随之增加。总之,再结晶程度的增加减少了微观结构中缺陷的数量,从而为形成高保护性的被动膜创造了有利条件。完全再结晶后形成的被动膜表现出更强的耐腐蚀性。
Effect of recrystallization degree on properties of passive film of super ferritic stainless steel S44660
The effect of the recrystallization degree on the properties of passive films formed in 0.1 M HNO3 solution for super ferritic stainless steel S44660 was examined in this study. The initial specimens, in their cold-rolled state, showed a high dislocation density, as observed through electron backscatter diffraction (EBSD) experiments. Analysis of potentiodynamic polarization (PDP) curves and electrochemical impedance spectroscopy (EIS) measurements suggested that with the increase of recrystallization degree, the corrosion current density reduced and the corrosion potential increased. As revealed by Mott–Schottky analysis, the passive film showed a dual structure of n-type and p-type semiconductors, with the carrier density of the passive film decreasing as the recrystallization degree increased. X-ray photoelectron spectroscopy (XPS) provided insights into the film composition, indicating that the Fe2O3 and Cr2O3 content, which improved the stability of the passive film, increased with the degree of recrystallization. In summary, the increase in recrystallization degree reduced the number of defects in the microstructure, thereby creating favorable conditions for the formation of highly protective passive films. The passive film formed after complete recrystallization exhibited enhanced corrosion resistance.
期刊介绍:
Corrosion Reviews is an international bimonthly journal devoted to critical reviews and, to a lesser extent, outstanding original articles that are key to advancing the understanding and application of corrosion science and engineering in the service of society. Papers may be of a theoretical, experimental or practical nature, provided that they make a significant contribution to knowledge in the field.