肺腺癌分级系统:预后效果简评与未来发展方向》(The Grading System for Lung Adenocarcinoma: Brief Review of its Prognostic Performance and Future Directions.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-04-26 DOI:10.1097/PAP.0000000000000452
Jose G Mantilla, Andre L Moreira
{"title":"肺腺癌分级系统:预后效果简评与未来发展方向》(The Grading System for Lung Adenocarcinoma: Brief Review of its Prognostic Performance and Future Directions.","authors":"Jose G Mantilla, Andre L Moreira","doi":"10.1097/PAP.0000000000000452","DOIUrl":null,"url":null,"abstract":"Histologic grading of tumors is associated with prognosis in many organs. In the lung, the most recent grading system proposed by International association for the Study of Lung Cancer (IASLC) and adopted by the World Health Organization (WHO) incorporates the predominant histologic pattern, as well as the presence of high-grade architectural patterns (solid, micropapillary, and complex glandular pattern) in proportions >20% of the tumor surface. This system has shown improved prognostic ability when compared with the prior grading system based on the predominant pattern alone, across different patient populations. Interobserver agreement is moderate to excellent, depending on the study. IASLC/WHO grading system has been shown to correlate with molecular alterations and PD-L1 expression in tumor cells. Recent studies interrogating gene expression has shown correlation with tumor grade and molecular alterations in the tumor microenvironment that can further stratify risk of recurrence. The use of machine learning algorithms to grade nonmucinous adenocarcinoma under this system has shown accuracy comparable to that of expert pulmonary pathologists. Future directions include evaluation of tumor grade in the context of adjuvant and neoadjuvant therapies, as well as the development of better prognostic indicators for mucinous adenocarcinoma.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Grading System for Lung Adenocarcinoma: Brief Review of its Prognostic Performance and Future Directions.\",\"authors\":\"Jose G Mantilla, Andre L Moreira\",\"doi\":\"10.1097/PAP.0000000000000452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Histologic grading of tumors is associated with prognosis in many organs. In the lung, the most recent grading system proposed by International association for the Study of Lung Cancer (IASLC) and adopted by the World Health Organization (WHO) incorporates the predominant histologic pattern, as well as the presence of high-grade architectural patterns (solid, micropapillary, and complex glandular pattern) in proportions >20% of the tumor surface. This system has shown improved prognostic ability when compared with the prior grading system based on the predominant pattern alone, across different patient populations. Interobserver agreement is moderate to excellent, depending on the study. IASLC/WHO grading system has been shown to correlate with molecular alterations and PD-L1 expression in tumor cells. Recent studies interrogating gene expression has shown correlation with tumor grade and molecular alterations in the tumor microenvironment that can further stratify risk of recurrence. The use of machine learning algorithms to grade nonmucinous adenocarcinoma under this system has shown accuracy comparable to that of expert pulmonary pathologists. Future directions include evaluation of tumor grade in the context of adjuvant and neoadjuvant therapies, as well as the development of better prognostic indicators for mucinous adenocarcinoma.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/PAP.0000000000000452\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PAP.0000000000000452","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤的组织学分级与许多器官的预后有关。在肺部,由国际肺癌研究协会(IASLC)提出并被世界卫生组织(WHO)采用的最新分级系统包括主要组织学形态以及肿瘤表面比例大于 20% 的高级别结构形态(实变、微乳头状和复杂腺体形态)。与之前仅基于主要形态的分级系统相比,该系统在不同的患者群体中显示出更好的预后能力。根据研究的不同,观察者之间的一致性从中等到优秀不等。IASLC/WHO分级系统已被证明与肿瘤细胞中的分子改变和PD-L1表达相关。最近对基因表达的研究表明,基因表达与肿瘤分级和肿瘤微环境中的分子改变相关,可进一步对复发风险进行分层。在该系统下使用机器学习算法对非粘液腺癌进行分级,结果显示其准确性可与肺部病理专家相媲美。未来的研究方向包括结合辅助治疗和新辅助治疗评估肿瘤分级,以及为粘液腺癌开发更好的预后指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Grading System for Lung Adenocarcinoma: Brief Review of its Prognostic Performance and Future Directions.
Histologic grading of tumors is associated with prognosis in many organs. In the lung, the most recent grading system proposed by International association for the Study of Lung Cancer (IASLC) and adopted by the World Health Organization (WHO) incorporates the predominant histologic pattern, as well as the presence of high-grade architectural patterns (solid, micropapillary, and complex glandular pattern) in proportions >20% of the tumor surface. This system has shown improved prognostic ability when compared with the prior grading system based on the predominant pattern alone, across different patient populations. Interobserver agreement is moderate to excellent, depending on the study. IASLC/WHO grading system has been shown to correlate with molecular alterations and PD-L1 expression in tumor cells. Recent studies interrogating gene expression has shown correlation with tumor grade and molecular alterations in the tumor microenvironment that can further stratify risk of recurrence. The use of machine learning algorithms to grade nonmucinous adenocarcinoma under this system has shown accuracy comparable to that of expert pulmonary pathologists. Future directions include evaluation of tumor grade in the context of adjuvant and neoadjuvant therapies, as well as the development of better prognostic indicators for mucinous adenocarcinoma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1