P. G. Roopashree, Shilpa S. Shetty, Vijith Vittal Shetty, P. C. Suhasini, Kumari N. Suchetha
{"title":"中链脂肪酸通过抑制 Akt/mTOR 通路和调节 Bcl-2 家族蛋白对人类乳腺癌细胞增殖的抑制作用","authors":"P. G. Roopashree, Shilpa S. Shetty, Vijith Vittal Shetty, P. C. Suhasini, Kumari N. Suchetha","doi":"10.1002/jcb.30571","DOIUrl":null,"url":null,"abstract":"<p>Medium-chain fatty acids (MCFAs) have 6–12 carbon atoms and are instantly absorbed into the bloodstream before traveling to the portal vein and the liver, where they are immediately used for energy and may have antitumor effects. Its role in breast cancer is poorly understood. To investigate the apoptosis-inducing effect of MCFAs in breast cancer cells, cell viability assay, colony formation assay, cell migration assay, cell invasion assay, nuclear morphology, cell cycle assay, intracellular reactive oxygen species (ROS), matrix metalloproteinase (MMP), apoptosis, RT-qPCR analysis, and Western blot analysis were performed. In the present study, MCFA treatments reduced proliferative capability, increased ROS level, increased the depletion of MMP, induced G0/G1 and S phase cell cycle arrest, and late apoptosis of breast cancer cells in an effective concentration. Besides, MCFA treatment contributed to the upregulation of proapoptotic protein (BAK) and caspase-3, and the downregulation of antiapoptotic protein (Bcl-2). Mechanistically, phosphorylation levels of EGFR, Akt, and mTOR were significantly reduced in breast cancer cells treated with MCFAs. However, no significant changes in apoptosis and signaling-related proteins were observed in lauric acid-treated ER-positive cancer cells. Our findings suggested that MCFAs suppressed breast cancer cell proliferation by modulating the PI3K/Akt/mTOR signaling pathway. MCFAs may be a promising therapeutic drug for treating breast cancer.</p>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"125 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibitory effects of medium-chain fatty acids on the proliferation of human breast cancer cells via suppression of Akt/mTOR pathway and modulating the Bcl-2 family protein\",\"authors\":\"P. G. Roopashree, Shilpa S. Shetty, Vijith Vittal Shetty, P. C. Suhasini, Kumari N. Suchetha\",\"doi\":\"10.1002/jcb.30571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Medium-chain fatty acids (MCFAs) have 6–12 carbon atoms and are instantly absorbed into the bloodstream before traveling to the portal vein and the liver, where they are immediately used for energy and may have antitumor effects. Its role in breast cancer is poorly understood. To investigate the apoptosis-inducing effect of MCFAs in breast cancer cells, cell viability assay, colony formation assay, cell migration assay, cell invasion assay, nuclear morphology, cell cycle assay, intracellular reactive oxygen species (ROS), matrix metalloproteinase (MMP), apoptosis, RT-qPCR analysis, and Western blot analysis were performed. In the present study, MCFA treatments reduced proliferative capability, increased ROS level, increased the depletion of MMP, induced G0/G1 and S phase cell cycle arrest, and late apoptosis of breast cancer cells in an effective concentration. Besides, MCFA treatment contributed to the upregulation of proapoptotic protein (BAK) and caspase-3, and the downregulation of antiapoptotic protein (Bcl-2). Mechanistically, phosphorylation levels of EGFR, Akt, and mTOR were significantly reduced in breast cancer cells treated with MCFAs. However, no significant changes in apoptosis and signaling-related proteins were observed in lauric acid-treated ER-positive cancer cells. Our findings suggested that MCFAs suppressed breast cancer cell proliferation by modulating the PI3K/Akt/mTOR signaling pathway. MCFAs may be a promising therapeutic drug for treating breast cancer.</p>\",\"PeriodicalId\":15219,\"journal\":{\"name\":\"Journal of cellular biochemistry\",\"volume\":\"125 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cellular biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcb.30571\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcb.30571","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Inhibitory effects of medium-chain fatty acids on the proliferation of human breast cancer cells via suppression of Akt/mTOR pathway and modulating the Bcl-2 family protein
Medium-chain fatty acids (MCFAs) have 6–12 carbon atoms and are instantly absorbed into the bloodstream before traveling to the portal vein and the liver, where they are immediately used for energy and may have antitumor effects. Its role in breast cancer is poorly understood. To investigate the apoptosis-inducing effect of MCFAs in breast cancer cells, cell viability assay, colony formation assay, cell migration assay, cell invasion assay, nuclear morphology, cell cycle assay, intracellular reactive oxygen species (ROS), matrix metalloproteinase (MMP), apoptosis, RT-qPCR analysis, and Western blot analysis were performed. In the present study, MCFA treatments reduced proliferative capability, increased ROS level, increased the depletion of MMP, induced G0/G1 and S phase cell cycle arrest, and late apoptosis of breast cancer cells in an effective concentration. Besides, MCFA treatment contributed to the upregulation of proapoptotic protein (BAK) and caspase-3, and the downregulation of antiapoptotic protein (Bcl-2). Mechanistically, phosphorylation levels of EGFR, Akt, and mTOR were significantly reduced in breast cancer cells treated with MCFAs. However, no significant changes in apoptosis and signaling-related proteins were observed in lauric acid-treated ER-positive cancer cells. Our findings suggested that MCFAs suppressed breast cancer cell proliferation by modulating the PI3K/Akt/mTOR signaling pathway. MCFAs may be a promising therapeutic drug for treating breast cancer.
期刊介绍:
The Journal of Cellular Biochemistry publishes descriptions of original research in which complex cellular, pathogenic, clinical, or animal model systems are studied by biochemical, molecular, genetic, epigenetic or quantitative ultrastructural approaches. Submission of papers reporting genomic, proteomic, bioinformatics and systems biology approaches to identify and characterize parameters of biological control in a cellular context are encouraged. The areas covered include, but are not restricted to, conditions, agents, regulatory networks, or differentiation states that influence structure, cell cycle & growth control, structure-function relationships.