{"title":"利用数据采集和 MATLAB 对福尔马林进行电化学氧化并将氧化产物转化为声音信号的创新方法","authors":"Gajalakshmi Duraikannu","doi":"10.1515/pac-2023-1125","DOIUrl":null,"url":null,"abstract":"\n \n Aim: Herein, the oxidation of chemical compounds as sound signals, prepared either by chemical, physical, mechanical, biological methods were reported. Objectives: To fabricate the synthesized material for example, nanoparticle, ceramic, electro catalyst as electrode, by mixing the synthesized material with a suitable binder or they may be mixed with a solvent to function as an electrolyte. In this case, 40 % formalin as electrolyte, platinum and calomel electrode as positive and negative electrodes respectively have been used to formulate an electrochemical cell. Methodology: This cell is connected with the sound card to process the sound signals and analyzed using Sig view software. The sound signals after noise deduction were further processed using MATLAB to get information about the signals. Results: For example, Frequency, Amplitude, etc. of those cells can be obtained. The FFT spectrum obtained by this method correlates well with the FTIR spectrum of formalin. Any Conductive chemical oxidation could be processed in this way and their chemical information could be digitized and saved in cloud.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An innovative method using data acquisition and MATLAB for the electrochemical oxidation of formalin and the conversion of the oxidized products into a sound signal\",\"authors\":\"Gajalakshmi Duraikannu\",\"doi\":\"10.1515/pac-2023-1125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Aim: Herein, the oxidation of chemical compounds as sound signals, prepared either by chemical, physical, mechanical, biological methods were reported. Objectives: To fabricate the synthesized material for example, nanoparticle, ceramic, electro catalyst as electrode, by mixing the synthesized material with a suitable binder or they may be mixed with a solvent to function as an electrolyte. In this case, 40 % formalin as electrolyte, platinum and calomel electrode as positive and negative electrodes respectively have been used to formulate an electrochemical cell. Methodology: This cell is connected with the sound card to process the sound signals and analyzed using Sig view software. The sound signals after noise deduction were further processed using MATLAB to get information about the signals. Results: For example, Frequency, Amplitude, etc. of those cells can be obtained. The FFT spectrum obtained by this method correlates well with the FTIR spectrum of formalin. Any Conductive chemical oxidation could be processed in this way and their chemical information could be digitized and saved in cloud.\",\"PeriodicalId\":20911,\"journal\":{\"name\":\"Pure and Applied Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/pac-2023-1125\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/pac-2023-1125","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
目的:本文报道了通过化学、物理、机械和生物方法制备的化合物氧化声信号。目标:通过将合成材料与适当的粘合剂混合,或将其与溶剂混合以充当电解质,制备作为电极的合成材料,如纳米粒子、陶瓷、电催化剂等。在本案例中,使用 40% 福尔马林作为电解质,铂电极和甘汞电极分别作为正极和负极,配制出一个电化学电池。方法:该电池与声卡连接,使用 Sig view 软件处理声音信号并进行分析。使用 MATLAB 对扣除噪声后的声音信号进行进一步处理,以获取信号信息。结果:例如,可以获得这些单元的频率、振幅等信息。这种方法获得的 FFT 频谱与福尔马林的傅立叶变换红外光谱有很好的相关性。任何导电化学氧化物都可以用这种方法进行处理,其化学信息可以数字化并保存在云端。
An innovative method using data acquisition and MATLAB for the electrochemical oxidation of formalin and the conversion of the oxidized products into a sound signal
Aim: Herein, the oxidation of chemical compounds as sound signals, prepared either by chemical, physical, mechanical, biological methods were reported. Objectives: To fabricate the synthesized material for example, nanoparticle, ceramic, electro catalyst as electrode, by mixing the synthesized material with a suitable binder or they may be mixed with a solvent to function as an electrolyte. In this case, 40 % formalin as electrolyte, platinum and calomel electrode as positive and negative electrodes respectively have been used to formulate an electrochemical cell. Methodology: This cell is connected with the sound card to process the sound signals and analyzed using Sig view software. The sound signals after noise deduction were further processed using MATLAB to get information about the signals. Results: For example, Frequency, Amplitude, etc. of those cells can be obtained. The FFT spectrum obtained by this method correlates well with the FTIR spectrum of formalin. Any Conductive chemical oxidation could be processed in this way and their chemical information could be digitized and saved in cloud.
期刊介绍:
Pure and Applied Chemistry is the official monthly Journal of IUPAC, with responsibility for publishing works arising from those international scientific events and projects that are sponsored and undertaken by the Union. The policy is to publish highly topical and credible works at the forefront of all aspects of pure and applied chemistry, and the attendant goal is to promote widespread acceptance of the Journal as an authoritative and indispensable holding in academic and institutional libraries.