{"title":"通过喂食 L-缬氨酸提高纳他霉素在 Streptomyces natalensis HW-2 中的产量","authors":"Wenhao Shen, Ying Zhang, Dahong Wang, Shiyang Jiao, Luyao Zhang, Jianrui Sun","doi":"10.1007/s10068-024-01570-8","DOIUrl":null,"url":null,"abstract":"<div><p>L-valine (L-Val) was previously confirmed to promote natamycin biosynthesis in <i>S. natalensis</i> HW-2. In this study, natamycin yield was 1.9-fold increase with 0.5 g/L L-Val feeding. The level of free amino acids in the broth was significantly affected. Transcriptome analysis showed that 646 and 189 genes were significantly differential expression at 48 h and 60 h, respectively. 7 differential expression genes in branched-chain amino acids (BCAAs) degradation were up-regulated. To further investigate the role of BCAAs degradation on natamycin biosynthesis, the gene <i>ilvE</i>, which encoded branched-chain amino acid aminotransferase (BCAT), was homologously overexpressed. The optimal mutant, <i>S. natalensis</i> LY08, was obtained, and its natamycin production was increased by 179%. With the optimized L-Val supplementation concentration, natamycin yield was increased to 2.02 g/L by strain LY08. This finding indicated the roles of BCAAs degradation on natamycin biosynthesis, and provided an efficient strategy to improve natamycin production in <i>S. natalensis</i>.</p></div>","PeriodicalId":566,"journal":{"name":"Food Science and Biotechnology","volume":"33 14","pages":"3323 - 3333"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the production of natamycin in Streptomyces natalensis HW-2 by L-valine feeding\",\"authors\":\"Wenhao Shen, Ying Zhang, Dahong Wang, Shiyang Jiao, Luyao Zhang, Jianrui Sun\",\"doi\":\"10.1007/s10068-024-01570-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>L-valine (L-Val) was previously confirmed to promote natamycin biosynthesis in <i>S. natalensis</i> HW-2. In this study, natamycin yield was 1.9-fold increase with 0.5 g/L L-Val feeding. The level of free amino acids in the broth was significantly affected. Transcriptome analysis showed that 646 and 189 genes were significantly differential expression at 48 h and 60 h, respectively. 7 differential expression genes in branched-chain amino acids (BCAAs) degradation were up-regulated. To further investigate the role of BCAAs degradation on natamycin biosynthesis, the gene <i>ilvE</i>, which encoded branched-chain amino acid aminotransferase (BCAT), was homologously overexpressed. The optimal mutant, <i>S. natalensis</i> LY08, was obtained, and its natamycin production was increased by 179%. With the optimized L-Val supplementation concentration, natamycin yield was increased to 2.02 g/L by strain LY08. This finding indicated the roles of BCAAs degradation on natamycin biosynthesis, and provided an efficient strategy to improve natamycin production in <i>S. natalensis</i>.</p></div>\",\"PeriodicalId\":566,\"journal\":{\"name\":\"Food Science and Biotechnology\",\"volume\":\"33 14\",\"pages\":\"3323 - 3333\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10068-024-01570-8\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10068-024-01570-8","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Improving the production of natamycin in Streptomyces natalensis HW-2 by L-valine feeding
L-valine (L-Val) was previously confirmed to promote natamycin biosynthesis in S. natalensis HW-2. In this study, natamycin yield was 1.9-fold increase with 0.5 g/L L-Val feeding. The level of free amino acids in the broth was significantly affected. Transcriptome analysis showed that 646 and 189 genes were significantly differential expression at 48 h and 60 h, respectively. 7 differential expression genes in branched-chain amino acids (BCAAs) degradation were up-regulated. To further investigate the role of BCAAs degradation on natamycin biosynthesis, the gene ilvE, which encoded branched-chain amino acid aminotransferase (BCAT), was homologously overexpressed. The optimal mutant, S. natalensis LY08, was obtained, and its natamycin production was increased by 179%. With the optimized L-Val supplementation concentration, natamycin yield was increased to 2.02 g/L by strain LY08. This finding indicated the roles of BCAAs degradation on natamycin biosynthesis, and provided an efficient strategy to improve natamycin production in S. natalensis.
期刊介绍:
The FSB journal covers food chemistry and analysis for compositional and physiological activity changes, food hygiene and toxicology, food microbiology and biotechnology, and food engineering involved in during and after food processing through physical, chemical, and biological ways. Consumer perception and sensory evaluation on processed foods are accepted only when they are relevant to the laboratory research work. As a general rule, manuscripts dealing with analysis and efficacy of extracts from natural resources prior to the processing or without any related food processing may not be considered within the scope of the journal. The FSB journal does not deal with only local interest and a lack of significant scientific merit. The main scope of our journal is seeking for human health and wellness through constructive works and new findings in food science and biotechnology field.