{"title":"CORDAX 网络服务器:用于预测蛋白质序列中聚集图案并将其三维可视化的在线平台。","authors":"Nikolaos N. Louros, F. Rousseau, J. Schymkowitz","doi":"10.1093/bioinformatics/btae279","DOIUrl":null,"url":null,"abstract":"MOTIVATION\nProteins, the molecular workhorses of biological systems, execute a multitude of critical functions dictated by their precise three-dimensional structures. In a complex and dynamic cellular environment, proteins can undergo misfolding, leading to the formation of aggregates that take up various forms, including amorphous and ordered aggregation in the shape of amyloid fibrils. This phenomenon is closely linked to a spectrum of widespread debilitating pathologies, such as Alzheimer's disease, Parkinson's disease, type-II diabetes, and several other proteinopathies, but also hampers the engineering of soluble agents, as in the case of antibody development. As such, the accurate prediction of aggregation propensity within protein sequences has become pivotal due to profound implications in understanding disease mechanisms, as well as in improving biotechnological and therapeutic applications.\n\n\nRESULTS\nWe previously developed Cordax, a structure-based predictor that utilizes logistic regression to detect aggregation motifs in protein sequences based on their structural complementarity to the amyloid cross-beta architecture. Here, we present a dedicated web server interface for Cordax. This online platform combines several features including detailed scoring of sequence aggregation propensity, as well as 3D visualization with several customization options for topology models of the structural cores formed by predicted aggregation motifs. In addition, information is provided on experimentally determined aggregation-prone regions that exhibit sequence similarity to predicted motifs, scores, and links to other predictor outputs, as well as simultaneous predictions of relevant sequence propensities, such as solubility, hydrophobicity, and secondary structure propensity.\n\n\nAVAILABILITY\nThe Cordax webserver is freely accessible at https://cordax.switchlab.org/.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CORDAX web server: An online platform for the prediction and 3D visualization of aggregation motifs in protein sequences.\",\"authors\":\"Nikolaos N. Louros, F. Rousseau, J. Schymkowitz\",\"doi\":\"10.1093/bioinformatics/btae279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MOTIVATION\\nProteins, the molecular workhorses of biological systems, execute a multitude of critical functions dictated by their precise three-dimensional structures. In a complex and dynamic cellular environment, proteins can undergo misfolding, leading to the formation of aggregates that take up various forms, including amorphous and ordered aggregation in the shape of amyloid fibrils. This phenomenon is closely linked to a spectrum of widespread debilitating pathologies, such as Alzheimer's disease, Parkinson's disease, type-II diabetes, and several other proteinopathies, but also hampers the engineering of soluble agents, as in the case of antibody development. As such, the accurate prediction of aggregation propensity within protein sequences has become pivotal due to profound implications in understanding disease mechanisms, as well as in improving biotechnological and therapeutic applications.\\n\\n\\nRESULTS\\nWe previously developed Cordax, a structure-based predictor that utilizes logistic regression to detect aggregation motifs in protein sequences based on their structural complementarity to the amyloid cross-beta architecture. Here, we present a dedicated web server interface for Cordax. This online platform combines several features including detailed scoring of sequence aggregation propensity, as well as 3D visualization with several customization options for topology models of the structural cores formed by predicted aggregation motifs. In addition, information is provided on experimentally determined aggregation-prone regions that exhibit sequence similarity to predicted motifs, scores, and links to other predictor outputs, as well as simultaneous predictions of relevant sequence propensities, such as solubility, hydrophobicity, and secondary structure propensity.\\n\\n\\nAVAILABILITY\\nThe Cordax webserver is freely accessible at https://cordax.switchlab.org/.\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae279\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae279","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
CORDAX web server: An online platform for the prediction and 3D visualization of aggregation motifs in protein sequences.
MOTIVATION
Proteins, the molecular workhorses of biological systems, execute a multitude of critical functions dictated by their precise three-dimensional structures. In a complex and dynamic cellular environment, proteins can undergo misfolding, leading to the formation of aggregates that take up various forms, including amorphous and ordered aggregation in the shape of amyloid fibrils. This phenomenon is closely linked to a spectrum of widespread debilitating pathologies, such as Alzheimer's disease, Parkinson's disease, type-II diabetes, and several other proteinopathies, but also hampers the engineering of soluble agents, as in the case of antibody development. As such, the accurate prediction of aggregation propensity within protein sequences has become pivotal due to profound implications in understanding disease mechanisms, as well as in improving biotechnological and therapeutic applications.
RESULTS
We previously developed Cordax, a structure-based predictor that utilizes logistic regression to detect aggregation motifs in protein sequences based on their structural complementarity to the amyloid cross-beta architecture. Here, we present a dedicated web server interface for Cordax. This online platform combines several features including detailed scoring of sequence aggregation propensity, as well as 3D visualization with several customization options for topology models of the structural cores formed by predicted aggregation motifs. In addition, information is provided on experimentally determined aggregation-prone regions that exhibit sequence similarity to predicted motifs, scores, and links to other predictor outputs, as well as simultaneous predictions of relevant sequence propensities, such as solubility, hydrophobicity, and secondary structure propensity.
AVAILABILITY
The Cordax webserver is freely accessible at https://cordax.switchlab.org/.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.