{"title":"论泊松-恩斯特-普朗克-纳维尔-斯托克斯系统解的良好拟合和衰减率","authors":"Xiaoping Zhai, Zhigang Wu","doi":"10.1007/s00021-024-00867-2","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the initial value problem associated to the Poisson–Nernst–Planck–Navier–Stokes system which is first derived by Wang et al. (J Differ Equ 262:68–115, 2017) through an Energetic Variational Approach (EVA). Exploiting harmonic analysis tools (especially Littlewood–Paley theory), we first study the local and global well-posedness of the system in critical Besov spaces. Then, under a suitable condition involving only low-frequency of initial data, we use the Lyapunov-type inequality of the energy functionals to establish optimal time decay rates for the constructed global solutions. The proof crucially depends on a careful analysis for treating the extra effect of the distribution for the negative (positive) charge and non-standard product estimates, interpolation inequalities.\n</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Well-Posedness and Decay Rates of Solutions to the Poisson–Nernst–Planck–Navier–Stokes System\",\"authors\":\"Xiaoping Zhai, Zhigang Wu\",\"doi\":\"10.1007/s00021-024-00867-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the initial value problem associated to the Poisson–Nernst–Planck–Navier–Stokes system which is first derived by Wang et al. (J Differ Equ 262:68–115, 2017) through an Energetic Variational Approach (EVA). Exploiting harmonic analysis tools (especially Littlewood–Paley theory), we first study the local and global well-posedness of the system in critical Besov spaces. Then, under a suitable condition involving only low-frequency of initial data, we use the Lyapunov-type inequality of the energy functionals to establish optimal time decay rates for the constructed global solutions. The proof crucially depends on a careful analysis for treating the extra effect of the distribution for the negative (positive) charge and non-standard product estimates, interpolation inequalities.\\n</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00867-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00867-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the Well-Posedness and Decay Rates of Solutions to the Poisson–Nernst–Planck–Navier–Stokes System
We consider the initial value problem associated to the Poisson–Nernst–Planck–Navier–Stokes system which is first derived by Wang et al. (J Differ Equ 262:68–115, 2017) through an Energetic Variational Approach (EVA). Exploiting harmonic analysis tools (especially Littlewood–Paley theory), we first study the local and global well-posedness of the system in critical Besov spaces. Then, under a suitable condition involving only low-frequency of initial data, we use the Lyapunov-type inequality of the energy functionals to establish optimal time decay rates for the constructed global solutions. The proof crucially depends on a careful analysis for treating the extra effect of the distribution for the negative (positive) charge and non-standard product estimates, interpolation inequalities.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.