{"title":"miR-199a-5p 通过调控 Wnt7b/Wnt/β-catenin 信号通路调节脉络膜新生血管。","authors":"Yu Geng, HaiRong Hua, Yuan Xia, Jie Zhou, Jian He, XingYu Xu, JianFeng Zhao","doi":"10.1007/s10735-024-10194-5","DOIUrl":null,"url":null,"abstract":"<div><p>Choroidal neovascularization (CNV) can be seen in many fundus diseases, and lead to fundus exudation, bleeding, or vision loss. miRNAs are vital regulator in CNV. miR-199a-5p has been proved to be involved in regulating vascular formation of endothelial cells, but its role in CNV remains unclear. This study aims to study the role of miR-199a-5p in CNV. Laser irradiation was used to induce CNV model. The lesion area of CNV was calculated by high-resolution angiography with fluorescein isothiocyanate-dextran. Wnt family member 7b (Wnt7b), β-catenin, and Wnt pathway proteins was measured by western blot. Immunofluorescence was performed to test Wnt7b, β-catenin, CD31, and p-p65. miR-199a-5p and Wnt7b mRNA were tested by reverse transcription real-time polymerase chain reaction. Cell count kit-8, wound healing, Transwell, tube formation, and flow cytometry were used to detect the function of miR-199a-5p and Wnt7b on human retinal microvascular endothelial cells (HRMEC). TargetScan database and dual-luciferase reporter assay verified the interaction between miR-199a-5p and Wnt7b. The results revealed that Wnt7b increased in CNV rats. Knocking down Wnt7b repressed cell proliferation, migration, invasion, and angiogenesis, and accelerated cell apoptosis of HRMEC. Dual-luciferase reporter assay verified that miR-199a-5p targeted Wnt7b. Overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC and promoted cell apoptosis by inhibiting Wbt7b. In vivo experiment found that Wnt7b rescued the promotion of miR-199a-5p inhibition on CNV lesion of rats. In addition, Wnt7b positively regulated Wnt/β-catenin signaling pathway and promoted the angiogenesis of HRMEC. In conclusion, overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC by regulating Wnt7b/Wnt/β-catenin signaling pathway, which may serve as a promising therapy target of CNV.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-199a-5p modulates choroidal neovascularization by regulating Wnt7b/Wnt/β-catenin signaling pathway\",\"authors\":\"Yu Geng, HaiRong Hua, Yuan Xia, Jie Zhou, Jian He, XingYu Xu, JianFeng Zhao\",\"doi\":\"10.1007/s10735-024-10194-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Choroidal neovascularization (CNV) can be seen in many fundus diseases, and lead to fundus exudation, bleeding, or vision loss. miRNAs are vital regulator in CNV. miR-199a-5p has been proved to be involved in regulating vascular formation of endothelial cells, but its role in CNV remains unclear. This study aims to study the role of miR-199a-5p in CNV. Laser irradiation was used to induce CNV model. The lesion area of CNV was calculated by high-resolution angiography with fluorescein isothiocyanate-dextran. Wnt family member 7b (Wnt7b), β-catenin, and Wnt pathway proteins was measured by western blot. Immunofluorescence was performed to test Wnt7b, β-catenin, CD31, and p-p65. miR-199a-5p and Wnt7b mRNA were tested by reverse transcription real-time polymerase chain reaction. Cell count kit-8, wound healing, Transwell, tube formation, and flow cytometry were used to detect the function of miR-199a-5p and Wnt7b on human retinal microvascular endothelial cells (HRMEC). TargetScan database and dual-luciferase reporter assay verified the interaction between miR-199a-5p and Wnt7b. The results revealed that Wnt7b increased in CNV rats. Knocking down Wnt7b repressed cell proliferation, migration, invasion, and angiogenesis, and accelerated cell apoptosis of HRMEC. Dual-luciferase reporter assay verified that miR-199a-5p targeted Wnt7b. Overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC and promoted cell apoptosis by inhibiting Wbt7b. In vivo experiment found that Wnt7b rescued the promotion of miR-199a-5p inhibition on CNV lesion of rats. In addition, Wnt7b positively regulated Wnt/β-catenin signaling pathway and promoted the angiogenesis of HRMEC. In conclusion, overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC by regulating Wnt7b/Wnt/β-catenin signaling pathway, which may serve as a promising therapy target of CNV.</p></div>\",\"PeriodicalId\":650,\"journal\":{\"name\":\"Journal of Molecular Histology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Histology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10735-024-10194-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-024-10194-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
miR-199a-5p modulates choroidal neovascularization by regulating Wnt7b/Wnt/β-catenin signaling pathway
Choroidal neovascularization (CNV) can be seen in many fundus diseases, and lead to fundus exudation, bleeding, or vision loss. miRNAs are vital regulator in CNV. miR-199a-5p has been proved to be involved in regulating vascular formation of endothelial cells, but its role in CNV remains unclear. This study aims to study the role of miR-199a-5p in CNV. Laser irradiation was used to induce CNV model. The lesion area of CNV was calculated by high-resolution angiography with fluorescein isothiocyanate-dextran. Wnt family member 7b (Wnt7b), β-catenin, and Wnt pathway proteins was measured by western blot. Immunofluorescence was performed to test Wnt7b, β-catenin, CD31, and p-p65. miR-199a-5p and Wnt7b mRNA were tested by reverse transcription real-time polymerase chain reaction. Cell count kit-8, wound healing, Transwell, tube formation, and flow cytometry were used to detect the function of miR-199a-5p and Wnt7b on human retinal microvascular endothelial cells (HRMEC). TargetScan database and dual-luciferase reporter assay verified the interaction between miR-199a-5p and Wnt7b. The results revealed that Wnt7b increased in CNV rats. Knocking down Wnt7b repressed cell proliferation, migration, invasion, and angiogenesis, and accelerated cell apoptosis of HRMEC. Dual-luciferase reporter assay verified that miR-199a-5p targeted Wnt7b. Overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC and promoted cell apoptosis by inhibiting Wbt7b. In vivo experiment found that Wnt7b rescued the promotion of miR-199a-5p inhibition on CNV lesion of rats. In addition, Wnt7b positively regulated Wnt/β-catenin signaling pathway and promoted the angiogenesis of HRMEC. In conclusion, overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC by regulating Wnt7b/Wnt/β-catenin signaling pathway, which may serve as a promising therapy target of CNV.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.