{"title":"硬质合金复合热喷涂涂层的微波与传统炉热处理比较","authors":"Steven Matthews, Fei Yang","doi":"10.1007/s11666-024-01772-w","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal spraying has become an industrial standard in the production of wear-resistant WC-Co and Cr<sub>3</sub>C<sub>2</sub>-NiCr composite coatings. However, generating optimum wear-resistant nano-reinforced carbide microstructures within the coatings remains challenging. The alternative two-step approach in this work involves coating formation under high energy conditions to generate maximum carbide dissolution, followed by heat treatment to precipitate nanocarbides. Microwave heating of particulate materials has been reported to offer several benefits over conventional furnace heating, including faster heating rates, internal rather than external heating, and acceleration of reactions/phase transformations at lower temperatures. This novel work explored the use of microwaves for heat treatment (as distinct from melting) of WC-Co and Cr<sub>3</sub>C<sub>2</sub>-NiCr thermal spray coatings and contrasted the rate of phase development with that from conventional furnace treatment. Coatings were successfully microwave heat-treated to generate the same phase composition as furnace treatment. Both treatments generated comparable results in the Cr<sub>3</sub>C<sub>2</sub>-NiCr system. The WC-Co system achieved a much more crystalline structure in a dramatically shorter time relative to the conventional furnace-treated sample. The results are contrasted as a function of material and microstructure interaction with microwaves and the critical phase transition temperatures to account for the observed responses.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 5","pages":"1643 - 1673"},"PeriodicalIF":3.2000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-024-01772-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparison of Microwave Versus Conventional Furnace Heat Treatments of Carbide Composite Thermal Spray Coatings\",\"authors\":\"Steven Matthews, Fei Yang\",\"doi\":\"10.1007/s11666-024-01772-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal spraying has become an industrial standard in the production of wear-resistant WC-Co and Cr<sub>3</sub>C<sub>2</sub>-NiCr composite coatings. However, generating optimum wear-resistant nano-reinforced carbide microstructures within the coatings remains challenging. The alternative two-step approach in this work involves coating formation under high energy conditions to generate maximum carbide dissolution, followed by heat treatment to precipitate nanocarbides. Microwave heating of particulate materials has been reported to offer several benefits over conventional furnace heating, including faster heating rates, internal rather than external heating, and acceleration of reactions/phase transformations at lower temperatures. This novel work explored the use of microwaves for heat treatment (as distinct from melting) of WC-Co and Cr<sub>3</sub>C<sub>2</sub>-NiCr thermal spray coatings and contrasted the rate of phase development with that from conventional furnace treatment. Coatings were successfully microwave heat-treated to generate the same phase composition as furnace treatment. Both treatments generated comparable results in the Cr<sub>3</sub>C<sub>2</sub>-NiCr system. The WC-Co system achieved a much more crystalline structure in a dramatically shorter time relative to the conventional furnace-treated sample. The results are contrasted as a function of material and microstructure interaction with microwaves and the critical phase transition temperatures to account for the observed responses.</p></div>\",\"PeriodicalId\":679,\"journal\":{\"name\":\"Journal of Thermal Spray Technology\",\"volume\":\"33 5\",\"pages\":\"1643 - 1673\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11666-024-01772-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Spray Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11666-024-01772-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01772-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Comparison of Microwave Versus Conventional Furnace Heat Treatments of Carbide Composite Thermal Spray Coatings
Thermal spraying has become an industrial standard in the production of wear-resistant WC-Co and Cr3C2-NiCr composite coatings. However, generating optimum wear-resistant nano-reinforced carbide microstructures within the coatings remains challenging. The alternative two-step approach in this work involves coating formation under high energy conditions to generate maximum carbide dissolution, followed by heat treatment to precipitate nanocarbides. Microwave heating of particulate materials has been reported to offer several benefits over conventional furnace heating, including faster heating rates, internal rather than external heating, and acceleration of reactions/phase transformations at lower temperatures. This novel work explored the use of microwaves for heat treatment (as distinct from melting) of WC-Co and Cr3C2-NiCr thermal spray coatings and contrasted the rate of phase development with that from conventional furnace treatment. Coatings were successfully microwave heat-treated to generate the same phase composition as furnace treatment. Both treatments generated comparable results in the Cr3C2-NiCr system. The WC-Co system achieved a much more crystalline structure in a dramatically shorter time relative to the conventional furnace-treated sample. The results are contrasted as a function of material and microstructure interaction with microwaves and the critical phase transition temperatures to account for the observed responses.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.