{"title":"热带气候下基于自然的雨水管理解决方案(NBS)的社区规模研究:泰国亚洲理工学院(AIT)案例","authors":"Fahad Ahmed, Ho Loc, M. S. Babel, Juergen Stamm","doi":"10.2166/hydro.2024.288","DOIUrl":null,"url":null,"abstract":"\n \n Rapid urbanization and population growth are placing more demands on the world's natural water resources. New infrastructures are increasing the degree of surface sealing as well as the tendency for urban flooding and water quality degradation. These problems can be counteracted by nature-based solutions (NBS) for urban drainage in developed countries mostly having a temperate climate. Hence, there is a need to develop similar sustainable measures for tropical regions as currently there are no guidelines available. In this study, the multi-criteria decision analysis (MCDA) approach was utilized to identify the best site for NBS in the Asian Institute of Technology (AIT) in Bangkok, Thailand. Then, PCSWMM software was used to develop a numerical model. It was found that MCDA approach is an appropriate approach to determine the best site for NBS implementation considering different aspects including economic, environmental, and technical ones. The results strongly suggested that Site-1 is a suitable alternative to implement NBS in the AIT campus. It was found that a bioretention system can reduce runoff volume by at least 14% and pollutants by at least 14–20%, respectively. The present study will provide a guideline for site selection and development of the NBS model for urban water management in a tropical climate.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A community-scale study on nature-based solutions (NBS) for stormwater management under tropical climate: The case of the Asian Institute of Technology (AIT), Thailand\",\"authors\":\"Fahad Ahmed, Ho Loc, M. S. Babel, Juergen Stamm\",\"doi\":\"10.2166/hydro.2024.288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Rapid urbanization and population growth are placing more demands on the world's natural water resources. New infrastructures are increasing the degree of surface sealing as well as the tendency for urban flooding and water quality degradation. These problems can be counteracted by nature-based solutions (NBS) for urban drainage in developed countries mostly having a temperate climate. Hence, there is a need to develop similar sustainable measures for tropical regions as currently there are no guidelines available. In this study, the multi-criteria decision analysis (MCDA) approach was utilized to identify the best site for NBS in the Asian Institute of Technology (AIT) in Bangkok, Thailand. Then, PCSWMM software was used to develop a numerical model. It was found that MCDA approach is an appropriate approach to determine the best site for NBS implementation considering different aspects including economic, environmental, and technical ones. The results strongly suggested that Site-1 is a suitable alternative to implement NBS in the AIT campus. It was found that a bioretention system can reduce runoff volume by at least 14% and pollutants by at least 14–20%, respectively. The present study will provide a guideline for site selection and development of the NBS model for urban water management in a tropical climate.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2024.288\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.288","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A community-scale study on nature-based solutions (NBS) for stormwater management under tropical climate: The case of the Asian Institute of Technology (AIT), Thailand
Rapid urbanization and population growth are placing more demands on the world's natural water resources. New infrastructures are increasing the degree of surface sealing as well as the tendency for urban flooding and water quality degradation. These problems can be counteracted by nature-based solutions (NBS) for urban drainage in developed countries mostly having a temperate climate. Hence, there is a need to develop similar sustainable measures for tropical regions as currently there are no guidelines available. In this study, the multi-criteria decision analysis (MCDA) approach was utilized to identify the best site for NBS in the Asian Institute of Technology (AIT) in Bangkok, Thailand. Then, PCSWMM software was used to develop a numerical model. It was found that MCDA approach is an appropriate approach to determine the best site for NBS implementation considering different aspects including economic, environmental, and technical ones. The results strongly suggested that Site-1 is a suitable alternative to implement NBS in the AIT campus. It was found that a bioretention system can reduce runoff volume by at least 14% and pollutants by at least 14–20%, respectively. The present study will provide a guideline for site selection and development of the NBS model for urban water management in a tropical climate.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.